
MathScript Documentation
For usage with GSVmulti from version 1.48 (MathScript version 1)

Changes

Version Status By

1.00 initiated SW

1.02 SUM/MEAN: N maximum mentioned, typos etc. SW

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de
16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de 1

Contents
Introduction...3
Usage..3
Creating the MathScripts..3
1. Form... 3

1.1. Instructions...4
1.2. Comments (optional)..4
1.3. Global Parameters (optional)...4

1.3.1...4
1.3.2...4
1.3.3...4
1.3.4...5

2. Creating the instructions...5
2.1. Arithmetic expressions...5
2.2. Variables..6

2.2.1. Current hardware input values...6
2.2.2. Output values..6
2.2.3. Input values from the last run..7
2.2.4. Output values from the last run...7
2.2.5. Special values...7

2.3. Numerical Constants (Literals)..8
2.4. Definition of Constants..8
2.5 Programming instructions...9

2.5.1. Iterations..9
The Condition..9
The Instruction in IF / ELIF...10

2.5.2. Buffer Instructions...10
SUM Instruction...10
MEAN Instruction...11
RESET Instruction..11

3. Execution of the MathScript...12
3.1.More tips for using MathScript...14

Annex..15
List of arithmetic Functions...15

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de

2 16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de

Introduction
The MathScript is a file with descriptions of calculations with which MathChannels can be
generated. These are software channels that can be displayed and recorded in GSVmulti like
all other channels.

You can use it to convert input values, which are usually real hardware channels; but also
generate signals, i.e. functions of time f(t). For the latter purpose, MathScript can also be
operated without connected hardware. This is useful, for example, to test calculations with
defined input signals.

Usage
If MathScript is to be used with connected hardware (measuring amplifier) at the same time,
all hardware channels must first be opened with Add Channel. Then the device type
"MathScript" is selected in the Add Channel dialog. A file selection dialog opens with which
the desired script can be selected. Then select the result channels of the script under "Input
Channel" (= left-hand variables x <no>, see below) that are to be displayed in GSVmulti. You
can select individual ones or ranges or all of them. With MathChannels , the Add Channel
dialog is confirmed, too.
GSVmulti then evaluates the script. If an error occurs, this is reported, otherwise the script is
translated into an optimized internal format that is used during the measurement run time.
If all MathChannels could be integrated correctly, they can be used like other channels;
however, less parametrization is available, so that some buttons are grayed out in the
configuration tab.

The channel configuration can be saved with Save Session and restored later with Load
Session; It is important that the MathScript with the same file name remains in the same
path (because only this is saved in the session file, but not the script content itself).

During run time, the script runs once for each individual measured value of all channels.

Any unit can be assigned to the MathChannels; this is saved in the session file, i.e. restored
with Load Session. As with all channels, the unit is selected using the drop-down menu in
the Configuration tab or via the Menu bar Channel Unit.→ →

If required, channels from measuring amplifiers can be hidden in the view (Channel Hide). →
This is useful when this channel is an input value for MathScript but is not to be displayed.

Only one MathScript can be used, i.e. it must contain the calculation of all required
MathChannels.

Creating the MathScripts

1. Form
MathScript is a text file with the extension txt.
The character coding is ASCII only, i.e. it must not contain any special characters that are
not part of the ASCII character set (with the exception of the comment texts, which are
ignored by the software).

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de
16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de 3

Each script consists at least of instructions (at least one) and optionally of comments and
global parameters. Instructions and global parameters are case-sensitive.

The end-of-line character can be in Windows or Linux form.

1.1. Instructions

Instructions are always terminated with a semicolon. Any number of spaces, tab characters
and line end characters can be placed between statements (i.e. variables and keywords).
More details on this in point 2.

1.2. Comments (optional)

Comments must have the # sign (cardinal / "hash tag") as the first character in a line. If they
go over several lines, each line must start again with #.

1.3. Global Parameters (optional)

Global parameters have the form

_<name> = <value>

All of these identifiers therefore begin with an underscore.
They should be at the beginning of a line and have no end-of-line characters.
Currently (version 1), there are 4 different parameters:

1.3.1.

_ScriptNo = <no>

This number is only used to differentiate between different scripts for the user. The number
is displayed in the Configuration tab as a serial number when a MathChannel is selected.
If the _ScriptNo entry is missing, 0 is assigned.

1.3.2.

_Version = <no>

This can be used to distinguish future extensions. If _Version is missing, version 1 is
assumed.

1.3.3.

_DataFreq = <value>

The specified data rate applies, if MathScript is used without hardware, after starting the
MathScript.
It denotes the number of runs per second, i.e. the number of MathChannel arrays calculated

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de

4 16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de

per second. The range of values is 1 to 1000 (however, high data frequencies are not
generated exactly; depending on the PC performance, system load and MathScript
complexity, the data frequency that can be achieved is often only approx. 300/s).

The data rate can be changed with GSVmulti if no hardware is connected; however, this
change is volatile, i.e. <value> is not automatically updated in MathScript.
If _DataFreq is missing, the default value 10 / s is used.
If measuring amplifiers are connected, the data rate of the devices applies and _DataFreq is
ignored.

It is recommended (for many reasons) to set them all to the same data frequency if
possible, in case of several devices are opened.

1.3.4.

_InArrayNo = <no>

If GSVmulti also performs special sensor calculations independently of MathScript, e.g.
stress measurement for rosette strain gauges or for multi-axis sensors, you can use this to
specify whether the input values in ch<no> represent these already calculated (physical)
values or raw values. For rosettes the raw values are strains in the unit µm/m and for multi-
axis sensors bridge excitation in mV/V.

With <no> = 0 it is indicated that the input values are calculated values (default) or raw
values with <no> = 1.

If the parameter _InArrayNo is missing, 0 is assumed, i.e. calculated values.
If no software-calculated special sensors are used (e.g. also with GSV-6 / -8 and hardware-
calculated six-axis sensor), this parameter has no meaning.

2. Creating the instructions
Instructions are categorized into pure arithmetic expressions, definitions of constants and
programming instructions, and they can contain operators, keywords, variables and numeric
constants. Variables designate input and output values.

2.1. Arithmetic expressions

Non-conditional arithmetic expressions always have the form

x<no>= <expression>;

x <no> is the specified form of the left-hand variable; <no> goes from 1 to 99, i.e. up to 99
expressions can be defined, see 2.2.2.

The <expression> itself may also contain left-hand variables, provided that these have been
defined before. It contains variables (see 2.2.), numeric constants (see 2.3.) and operators.
Operators are those of the basic arithmetic operations and arithmetic functions (see
appendix). All arithmetic functions have exactly one argument. The basic operators are used
in normal mathematical forward order. They include:

+ <Addition>

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de
16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de 5

- <Subtraction>
* <Multiplication>
/ <Division>
^ <Power-of>

Terms in the expression can be structured with round brackets. The preference of
multiplication and division over addition and subtraction is known to MathScript; However,
the use of brackets is recommended for very complex expressions.

All calculations are carried out internally using the 64-bit double data format.

Example 1:

Multiply the values of channel 1 (from hardware) by 0.3 and add 5 to the product and assign the
#result to the variable x1:
x1= 5 + ch1*0,3;

The left-hand variables are to be used with all their right-hand expressions (including
conditional ones) in ascending order, i.e. the first is x1, then x2 follows (if present) etc.

2.2. Variables

Variables have a fixed notation with a fixed meaning. The total number of variables used is
limited to 280; for further restrictions see chapter 3.

2.2.1. Current hardware input values

They designate measured values of the current run. The notation is:

ch<no> ch1 … ch99

<no> refers to the channel number in GSVmulti, which is displayed in "Actual Channel" and
can range from 1 to 99. The input channel must exist, i.e. it must have been opened before
with Add Channel or be part of the session file. Input values may only be used right-handed,
i.e. only read.

2.2.2. Output values

They indicate left-hand results of calculations. They can therefore be opened with Add
Channel, but do not have to, i.e. they can also be intermediate values that are not displayed.
Defined values may also be used on the right in the following expressions, i.e. written and
read. The notation is:

x<no> x1 … x99

<no> is a sequential number, starting with 1, then 2, and so on, up to 99.

Example 2:

x1= ch1*0,3 + 5;
Calculate ch7 to the power of ch1 * 0.3 + 5 and assign the result to x2
x2= ch7^x1;

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de

6 16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de

2.2.3. Input values from the last run

With each calculation run, i.e. at each point in time at which the array of input channel values
is acquired, MathScript executes once and the input values ch <no> are saved. The input
values from the previous run can be accessed with:

ch<no>L ch1L … ch99L

The input values of the last run can also only be used as right-hand values, i.e. only read.

Example 3:

Form the discrete slope, i.e. the difference to the last measured value of channel 1 and
assign this result (the temporally uncorrelated differential dx) to the variable x1:
x1= ch1 – ch1L;

2.2.4. Output values from the last run

With each calculation run, also the output values x<no> are stored. The output values from
the last run can be accessed with

x<no>L x1L … x99L

Also the output values of the last run can also only be used as right-hand values, i.e. only
read.. <no> corresponds to <no> of the x-value, e.g. x1L is the last value of x1. That’s why
x<no> must be defined in the script before.

Example 4:

Create a sine signal (on the meaning of CNT: see 2.2.5.)
x1= sin(CNT*6,2832/100);
Calculate the deviation of x1, i.e. a cosine signal with the same magnitude of 1:
x2= (100/6,2832) * (x1-x1L);

2.2.5. Special values

Until now (version 1) there are two special variables:

CNT and FREQ.

CNT is a running integer counter, that is initialized to 0 at a Reset-Event (see 3.) and
incremented by 1 in every run after the execution of all instructions. It can be reset
programmatically by using the RESET instruction (see 2.3.4). If that is never done it will reset
itself to zero after 4.294.967.295 (2^32 -1) runs.
CNT is, among other things, suitable for generating functions f (t) that are dependent on the
discrete time, i.e. signals with a discretized time, because the time between two runs
corresponds to 1 / FREQ, i.e. the measurement data period (mathematically, such a signal is
calculated with y = f (kT), where k = CNT and T = 1 / FREQ). For processing, CNT is
converted internally into a floating point number.

See examples 4 and 6.

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de
16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de 7

FREQ is the currently set measurement data frequency (total sampling rate) of the system.
If there are several measuring amplifiers with different measurement data frequencies,
FREQ is the mean value of the maximum and minimum measurement data rate (this special
case is not recommended, however).

Example 5:

Form the integrals of channel 1 with respect to time over each measurement data period
x1= ch1 / FREQ;

2.3. Numerical Constants (Literals)

Constants can be written as an integer, as a decimal number with decimal places or
as a (scientific) exponential representation on base 10. The decimal separator
usually corresponds to the language set in the Windows OS. If this is a comma (e.g.
with German Windows), a period may exceptionally be used, too. Literals can be used
in expressions or programming instructions, but have to be present in the definition
of constants, right beneath the equal sign =.
Examples:
48 3.1415926 -5 2.598E5 -1.586E-3

2.4. Definition of Constants

Substitute identifiers can be defined for numeric constants / literals. These may be
used in following expressions or programming instructions. The definition has the
form:

const<String>=<numeric constant>;

<String> stands directly after const and may contain all uppercase and lowercase
letters and digits, but no special characters such as _ ? . , * - <space>.

Example 6:

constPI=3,1415926;
constE= 73000;
conste = 2.718281828;
const23 = -41.7E-6;
x1= ch1*constE / (constPI * (1+const23*conste));

In example 6, x1 with ch1 = 1 gives the result 23239.2559. Note that conste and
constE are treated as different (case-sensitive).

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de

8 16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de

2.5 Programming instructions

All programming keywords are written in uppercase letters. Programming
statements are always terminated with a semicolon, too. The notation of the
variables (see 2.2.) is the same as for arithmetic expressions.
There are 2 categories of instructions: iterations and buffer instructions.

2.5.1. Iterations

Iterations are statements that are only executed when a condition is met. They can consist
of a single IF statement or an IF / ELIF / ENDIF block.
IF statements have the form:

IF(<condition>) { <instruction>};

IF/ELIF/ENDIF blocks have the form:

IF(<condition>) { <instruction> };
ELIF(<condition>) { <instruction> };
<optionally other ELIF statements>
ENDIF;

The Condition

Only one condition can be checked in each IF / ELIF instruction, so a Boolean combination
of several conditions is not possible within one instruction. The condition consists of a
variable and a numeric constant or of two variables that are compared with each other.
The following 6 comparison operators exist:

> <greater than>
< <less than>
>= <greater or equal>
<= <less or equal>
= <equal>1

!= <not equal>

The condition in an ELIF instruction is only checked if all previous IF and ELIF conditions are
not met. As soon as a condition is met in an IF / ELIF / ENDIF block, the corresponding
statement is executed and all subsequent ELIF conditions are no longer checked (ELIF
corresponds, for example, to the else if () behavior in the C language).
If none of the conditions apply, no instruction is executed and the left-hand value in the
instruction x <no> retains the last assigned value, i.e. also that of the previous script run, if it
was not yet assigned in the current run.

Tip: In order to accomplish the behavior of a typical ELSE instruction, i.e. an instruction that
is executed if none of the previous IF / ELIF conditions apply, the immediately preceding IF /
ELIF condition can be logically reversed with the same arguments, see example 10.

1 The equal / unequal comparison takes place in the interval of the so-called machine epsilon of the 64-bit
double mantissa

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de
16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de 9

The Instruction in IF / ELIF

The instruction is enclosed in curly brackets. With the exception of the RESET command
(see 2.5.2), instructions consist of exactly one assignment of the form

x<no>= <expression>

The expression can be exactly one arithmetic instruction or one buffer instruction.

Within an IF / ELIF / ENDIF block, all x <no> variables on the left must be the same (version
1).

Example 7:

Skript without hardware, creates a triangle signal with the amplitude constA= 5
The signal period is divided into 3 sections, i.e. defined section by section
constA = 5;
IF(CNT < 25) {x1= CNT*4*constA/100};
ELIF(CNT < 75) {x1= 2*constA-(CNT*4*constA/100)};
ELIF(CNT < 100) {x1= (CNT*4*constA/100) - 4*constA};
ENDIF;
Resetting the counter. Done after the last ELIF statement in the block above,
so that CNT has a value range from 0 to 99
IF(CNT=99) {RESET(0)};

2.5.2. Buffer Instructions

Buffer instructions enable summing up or averaging of values that follow one another in
time. Internal accumulation registers are used to store the totals. Up to 23 accumulation
registers can be used.

SUM Instruction

The SUM instruction is used to sum values of the same variable that are consecutive in
time. It has the form:

x<no>= SUM<a>(<arg>, N);

Whereby:

x<no>: Result variable, left-handed value

<a>: Number of the accumulating register. The value range is from 1 to 23. If <a> is omitted,
if will be substituted by 1. With this, e.g. different arguments (variables) can be summed up
independently of each other. A new <a> must then be selected for each SUM instruction, in
ascending order. The MEAN instruction uses the same register bank, that’s why, when
selecting the number for <a>, the MEAN instructions have to be counted, too.

<arg>: Argument, i.e. variable, that shall be summed up. Possible arguments are: ch<no>,
x<no> (if defined before), ch<no>L, x<no>L (if x<no> defined before).

N: Number of values to be added. If N> 1, each result is the sum of the (N-1) -last values plus

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de

10 16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de

the current value1 in <arg>. However, this only applies if N or more values are already
available after a RESET event. Otherwise the result is the sum of all existing values in <arg>.

If N = 0, the system continues to add. The result is the sum of all values in <arg> from the
last RESET event (see below) or RESET command to the next RESET event / command. The
maximum value for N is 8000.2

Example 8:

Form the sum of the current and the last 9 values of channel 1
x1= SUM1(ch1, 10);
Form the sum of the current and the last 99 values of channel 7
x2= SUM2(ch7, 100);

MEAN Instruction

The MEAN instruction is used to calculate the arithmetic mean value of consecutive values
of the same variable. It has the form:

x<no>= MEAN<a>(<arg>,N);

The meaning of the placeholders no, a, arg and N is the same as for the SUM statement. If
you select <a>, it starts with 1 and then counts on, including the SUM instructions.
The difference to the SUM instruction is that with MEAN the sum is always divided by the
number of added values. If N> 1, this is N if there are already N values since the RESET
event; otherwise the number of existing (= totaled) values. If N = 0, it is divided by the
number of accumulated values and the divisor becomes larger and larger - up to a new
RESET event.
This results in a moving average.

Example 9:

Form the mean value over the current and the last 9 values of channel 1
x1= MEAN1(ch1, 10);
Form the mean value over the current and the last 99 values of channel 7
x2= MEAN2(ch7, 100);

RESET Instruction

The RESET command is used in the execution part of a conditional statement. This can be
used to reset the general counter "CNT" or one of the sum registers to 0.

Form:

IF(<Condition>) { RESET(<a>) };

The parameter <a> specifies what is to be reset:

a=0: General counter CNT.

2 With GSVmulti version 1.48, the maximum for N ist only 1000.

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de
16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de 11

A= 1..23: Accumulation register; according to the parameter <a> of a previously used
SUM(<a>) or MEAN(<a>) instruction.

See example 7:

IF(CNT=99) {RESET(0)};

CNT thus takes values from 0 to 99.

Example 10:

Calculate x2= integral of ch1 within the boundary y >10^-6
Outside this boundary (i.e. y<=10^-6), the last value of x2 is output repeatedly

x1=ch1/FREQ;
IF(ch1>1E-6){x2=SUM(x1, 0)};
ELIF(ch1<=1E-6){RESET(1)};
ENDIF;

Example 10.1:

As Example 10, but x2 is set to 0 outside the integral boundary:

x1=ch1/FREQ;
IF(ch1>1E-6){x2=SUM(x1, 0)};
ELIF(ch1<=1E-6){x2= 0};
ENDIF;
IF(ch1<=1E-6){RESET(1)};

3. Execution of the MathScript
After the script has been opened and integrated (i.e. after clicking Connect in the Add
Channel dialog or after opening a session with MathChannels) it is first evaluated ("parsed")
and checked for some errors. Many types of errors can be detected, but not all. If no error is
detected, the script is translated into an internal structure that helps to carry out the
calculations as efficiently as possible during run time This can be done with a data
frequency of up to 12000/s, depending on the PC performance, power availability and script
complexity.
All run time data (e.g. sum register, last measured and output values) are set to 0 before the
first execution. This Reset event is also triggered once when you click on Start Measuring or
Start Recording (in the Yt and XY recorders).

The calculation at run time takes place in 3 main steps:

A) Execution of all programming instructions that do not require any current output values
(x<no> variables) as inputs, i.e. as right-handed values.

B) Executing all non-conditional arithmetic instructions

C) Execution of all programming instructions that require current output values from
previous calculations (x<no> variables) as input.

This procedure has the side-effect that the instructions may be executed in a different order

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de

12 16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de

than they are given in the MathScript. In addition, the results of instructions that are
executed in step C (i.e. that require current output values as input) cannot be processed
further, i.e. their results x<no> may no longer be used as a right-hand input value.

The execution order is shown indirectly in the Add Channel dialog after the script file has
been opened. On the right under Input Channel is a drop-down menu called Variable.

For instance, the order x1, x3, x4, x2, x5:

results from the following script (example 11):

x1=MEAN1(ch1,1000);
IF(CNT < 25) {x2= CNT*4*10*x1/100};
ELIF(CNT < 75) {x2= 2*10*x1-(CNT*4*10*x1/100)};
ELIF(CNT < 100) {x2= (CNT*4*10*x1/100)-(4*10*x1)};
ENDIF;
IF(CNT=99) {RESET(0)};

x3= MEAN2(ch2,3);
x4=x1/FREQ;

IF(ch2>1E-6){x5=SUM3(x4,0)};
ELIF(ch2<=1E-6){x5=0};
ENDIF;
IF(ch2<=1E-6){RESET(3)};

The calculation of x2, i.e. all lines 2 to 6, is shifted to step C because these instructions
require the value x1 on the right-hand side. x1 (line 1) and x3 (line 7) are executed in step A
and x4 (line 8) in step B, using the value x1 already calculated in A.
The calculation of x5 (lines 9 to 12) is carried out in step C because the value x4 is
required on the right-hand side.

If the script in example 11 is changed in line 7 as follows:

x1=MEAN1(ch1,1000);
IF(CNT < 25) {x2= CNT*4*10*x1/100};
ELIF(CNT < 75) {x2= 2*10*x1-(CNT*4*10*x1/100)};
ELIF(CNT < 100) {x2= (CNT*4*10*x1/100)-(4*10*x1)};
ENDIF;
IF(CNT=99) {RESET(0)};

x3= MEAN2(x2, 3);
x4=x1/FREQ;

IF(ch2>1E-6){x5=SUM3(x4,0)};
ELIF(ch2<=1E-6){x5=0};

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de
16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de 13

ENDIF;
IF(ch2<=1E-6){RESET(3)};

Then it cannot be carried out correctly because the calculation of x3 depends on a
calculation result carried out in step C, namely x2.

The total number of variables used is also limited by the number of programming
instructions in step A, whereby IF ... ELIF ... ENDIF blocks are counted as one instruction
here. The total number of different variables plus the instructions in A must be less than
287.

3.1.More tips for using MathScript

- If you activate the radio button "Open All Channels" in the Add Channel dialog, the
MathChannels will be opened in the above execution order. You can also open channels
individually, in any order (the only important thing is that the required hardware channels
have been opened beforehand).

- In order to use a different MathScript than the one that is already integrated, all
MathChannels must first be removed with Remove Channel.

- If hardware channels are required for the MathScript that should not be displayed, you can
"hide" them with Channel -> Hide. This state is also saved with Save Session.

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de

14 16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de

Annex

List of arithmetic Functions

Function Name Description

abs(x) Absolute Value Returns the absolute value of x.

acos(x) Inverse Cosine Computes the inverse cosine of x in radians.

acosh(x) Inverse Hyperbolic
Cosine Computes the inverse hyperbolic cosine of x.

asin(x) Inverse Sine Computes the inverse sine of x in radians.

asinh(x) Inverse Hyperbolic
Sine Computes the inverse hyperbolic sine of x.

atan(x) Inverse Tangent Computes the inverse tangent of x in radians.

atanh(x) Inverse Hyperbolic
Tangent Computes the inverse hyperbolic tangent of x.

ceil(x) Round Toward
+Infinity

Rounds x to the next higher integer (smallest
integer x).

cos(x) Cosine Computes the cosine of x, where x is in radians.

cosh(x) Hyperbolic Cosine Computes the hyperbolic cosine of x.

cot(x) Cotangent Computes the cotangent of x (1/tan(x)), where x is
in radians.

csc(x) Cosecant Computes the cosecant of x (1/sin(x)), where x is
in radians.

exp(x) Exponential Computes the value of e raised to the x power.

expm1(x) Exponential (Arg) – 1 Computes one less than the value of e raised to
the x power ((e^x) – 1).

floor(x) Round To –Infinity Truncates x to the next lower integer (largest
integer x).

getexp(x) Get Exponent Returns the exponent of the input numeric value
such that x = mantissa * 2^exponent.

getman(x) Get Mantissa Returns the mantissa of the input numeric value
such that x = mantissa * 2^exponent.

int(x) Round To Nearest Rounds x to the nearest integer.

intrz(x) — Rounds x to the nearest integer between x and
zero.

ln(x) Natural Logarithm Computes the natural logarithm of x (to the base
of e).

lnp1(x) Natural Logarithm (Arg
+1) Computes the natural logarithm of (x + 1).

log(x) Logarithm Base 10 Computes the logarithm of x (to the base of 10).

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de
16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de 15

log2(x) Logarithm Base 2 Computes the logarithm of x (to the base of 2).

rand(0) Random Number (0 –
1)

Produces a floating-point number between 0 and
1 exclusively. Remark: Must write rand(0), i.e.
contain dummy argument 0.

sec(x) Secant Computes the secant of x, where x is in radians
(1/cos(x)).

sign(x) Sign Returns 1 if x is greater than 0, returns 0 if x is
equal to 0, and returns –1 if x is less than 0.

sin(x) Sine Computes the sine of x, where x is in radians.

sinc(x) Sinc Computes the sine of x divided by x (sin(x)/x),
where x is in radians.

sinh(x) Hyperbolic Sine Computes the hyperbolic sine of x.

sqrt(x) Square Root Computes the square root of x.

tan(x) Tangent Computes the tangent of x, where x is in radians.

tanh(x) Hyperbolic Tangent Computes the hyperbolic tangent of x.

gamma(x) Gamma function

ci(x) Cosine integral

si(x) Sine Intergral

spike(x) Spike function The following equation defines the spike function:
spike(x) = 1, if 0 x < 1 and 0 elsewhere.

Subject to change.
All information describes our products in general terms.
It does not constitute a guarantee of quality within the meaning of Section 459, Paragraph 2 of the German Civil Code
(BGB)
and does not constitute liability.

Made in Germany Copyright © 2025
ME-Meßsysteme GmbH

Printed in Germany

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de

16 16761 Hennigsdorf Fax: +49 3302 89824 69 Web: www.me-systeme.de

	Introduction
	Usage
	Creating the MathScripts
	1. Form
	1.1. Instructions
	1.2. Comments (optional)
	1.3. Global Parameters (optional)
	1.3.1.
	1.3.2.
	1.3.3.
	1.3.4.

	2. Creating the instructions
	2.1. Arithmetic expressions
	2.2. Variables
	2.2.1. Current hardware input values
	2.2.2. Output values
	2.2.3. Input values from the last run
	2.2.4. Output values from the last run
	2.2.5. Special values

	2.3. Numerical Constants (Literals)
	2.4. Definition of Constants
	2.5 Programming instructions
	2.5.1. Iterations
	The Condition
	The Instruction in IF / ELIF

	2.5.2. Buffer Instructions
	SUM Instruction
	MEAN Instruction
	RESET Instruction

	3. Execution of the MathScript
	3.1.More tips for using MathScript

	Annex
	List of arithmetic Functions

