

4-Kanal Messverstärker GSV-4

GSV-4USB **Bedienungsanleitung**

Stand: 06.09.2024

Tel.: +49 3302 89824 10

Inhaltsverzeichnis

DMS Messverstärker GSV-4USB	4
Beschreibung	4
Abmessungen	5
Technische Daten	6
Anschlussbelegung	7
Programmierung / Konfiguration	22
Skalierung der Messwerte	
Messbereich 2,0 mV/V	22
Messbereich 10,0 mV/V	22
Messbereich 0,0 bis 5V	23
Messbereich 0,0 bis 10V	23
Messbereich PT1000	
Messbereich K-Thermokabel	24
Kommandos zur Konfiguration	24
Liste der Kommandos	
Beschreibung der Kommandos	26
Protokoll für Messwerte	29
Protokoll für Kommandos	29
Protokoll für Antworten auf Kommandos	29
Digitale IO's	30
Analogeingang	34
CAN Bus	36
Protokoll für Messwerte	36
Protokoll für Kommandos	36
Protokoll für Antworten auf Kommandos	36
Konfiguration der CAN-ID	
Datenfrequenz und Filter	38
Analogfilt ['] er	38
Digitalfilter	
Changelog	40

Tel.: +49 3302 89824 10

DMS Messverstärker GSV-4USB

GSV-4USB M12 Frontansicht Sensoranschluss

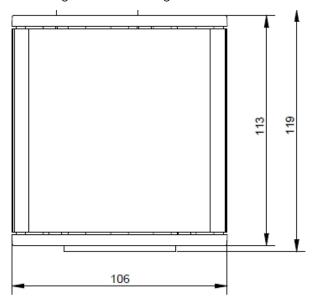
GSV-4USB SUB-D37 Frontansicht Sensoranschluss

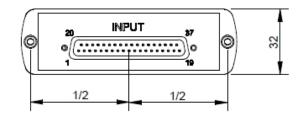
- 4-Kanäle
- Versorgung über USB Port
- Eingänge für DMS / 0 10 V / PT1000
- Messbereiche 2 mV/V / 10 mV/V
- DMS Viertel- / Halb- Vollbrücken
- 8 digitale Ein-/ Ausgänge
- Datenrate 0 Hz 500 Hz

Beschreibung

Dieser 4-Kanal Messverstärker für Sensoren mit Dehnungsmessstreifen ist mit einer USB Schnittstelle ausgestattet. Die Spannungsversorgung erfolgt über den USB Port auf der Rückseite des Messverstärkers. Der Messverstärker ist mit SUB-D37 Anschluss bzw. mit 4x M12 Anschlussbuchsen lieferbar. Der Messverstärker verfügt über acht digitale Ein- und Ausgänge.

An der rückseitigen SubD25 Buchse können DMS-Voll- DMS-Halbbrücken 120 Ohm bis 1 kOhm sowie PT1000 Temperaturfühler und 1000 Ohm Einzelgitter oder Spannungen 0...5V angeschlossen werden.


Die frontseitige M12 Buchse ist per default konfiguriert für DMS Vollbrücken und für Spannungseingang 0...5V und 0...10V.


Tel.: +49 3302 89824 10

Abmessungen

Abbildung 1: Abmessungen GSV-4USB SUB-D37

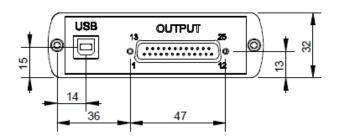
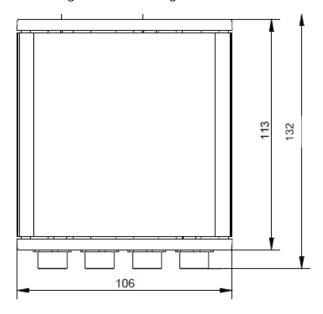
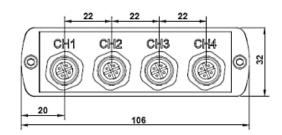
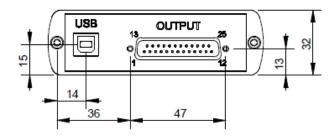
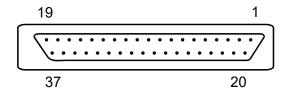





Abbildung 2: Abmessungen GSV-4USB M12

Tel.: +49 3302 89824 10


Technische Daten

Genauigkeitsklasse	0,05	%
Eingänge		
Auflösung	16	Bit
DMS-Eingänge Vollbrücke Halbbrücke Viertelbrücke	89 - 5000 89 - 5000 120 / 350 / 1000	Ohm Ohm Ohm
Gleichtaktunterdrückung bei 60Hz common-mode signal	95 – 110	dB
Messfrequenzen		
Datenfrequenz	0 - 500	Hz
Abtastfrequenz	1,92	MHz
Grenzfrequenz analog digital	450 Notch-Filter	Hz Hz
Ausgänge		
Brückenspeisespannung Strombelastbarkeit	2,5 30	Volt mA
Festspannungsausgang Strombelastbarkeit	5 20	V mA
Schaltausgänge/-eingänge I/O 1 - 8 Strombelastbarkeit: Schnittstelle	TTL-Pegel 5 (active High) 5 USB 1.1, USB 2.0 kompatibel	V mA
	USB 1.1, USB 2.0 KUTIPATIDE	
Versorgungsspannung Nennbereich Isolation Voltage Stromaufnahme	4,55,5 über USB Port 1000 < 200	V DC Vrms mA
Temperaturbereich		
Nenntemperaturbereich Lagertemperaturbereich Drift des Nullpunkts Drift der Empfindlichkeit	-10+65 -40+85 < 0,05 < 0,01	°C °C %/10°C %/10°C

Abmessungen		
LxBxH	106 x 119 (132) x 32	mm x mm x mm
Schutzart / Gewicht		
Schutzart	IP40	
Gewicht GSV-4USB SUB-D37	239	g

Anschlussbelegung

Anschlussplan für 37-pol. Sub-D Buchse

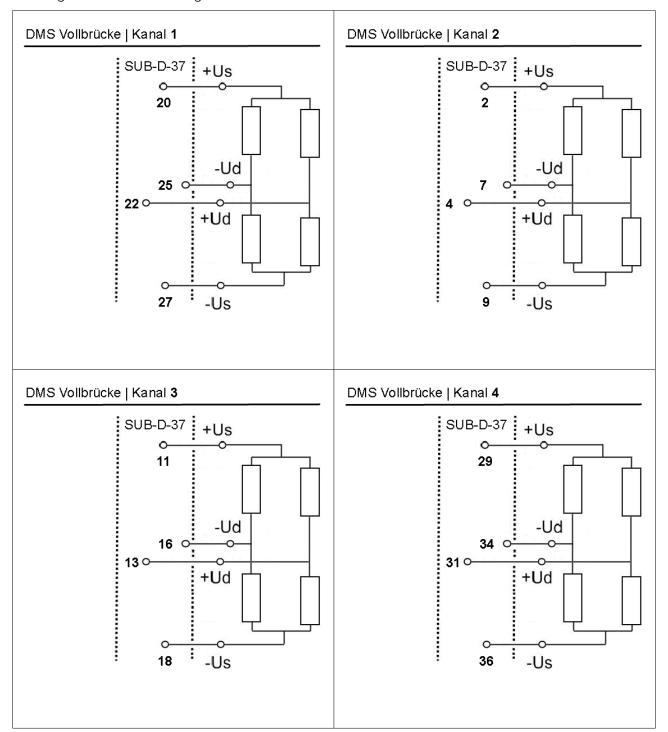
	GSV-4USB Belegung	37-pol. SUB-D (PIN-Nr.)				
		Kanal 1	Kanal 2	Kanal 3	Kanal 4	
+Us	positive Sensorspeisung	20	2	11	29	
+U _D	positiver Differenzeingang	22	4	13	31	
QB1000	Viertelbrücken Ergänzung 1kOhm	23	5	14	32	
НВ	Halbbrückenergänzung	24	6	15	33	
-U _D	negativer Differenzeingang	25	7	16	34	
-Us	negative Sensorspeisung	27	9	18	36	
UE	Analog Eingang	28	10	19	37	
	Schirm	1	1	1	1	

Tabelle 1: Analog-Eingänge

Anschlussbelegung für GSV-4USB M12

5-polige Buchse M12x1, Typ 763

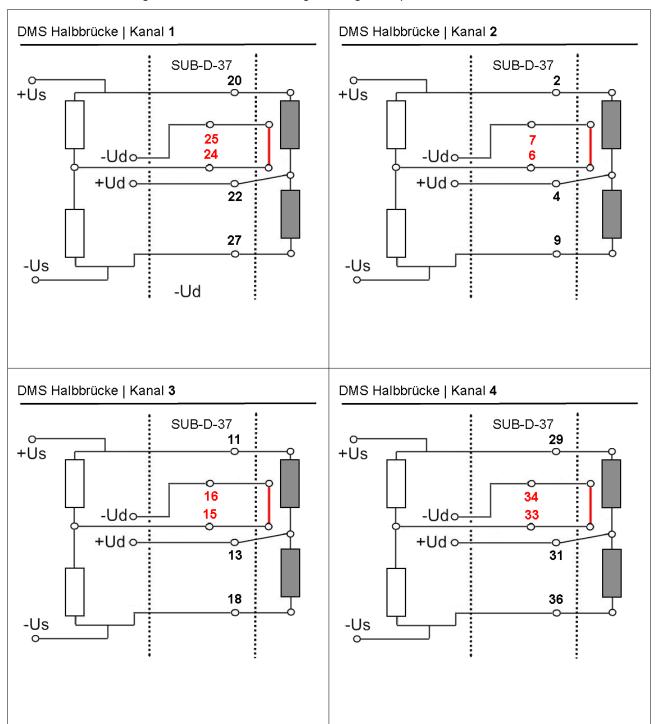
Aufsicht:


5-pol.	Beschreibung	Farbcode für Kabel
2	-Us negative Brückenspeisung	weiß
1	+U _S positive Brückenspeisung	braun
3	+U _D positiver Differenzeingang	blau
4	-U _D negativer Differenzeingang	schwarz
5	AUXin konfektionierbarer Eingang	grau

Tel.: +49 3302 89824 10

Anschluss Vollbrücke bei SUB-D37-Variante

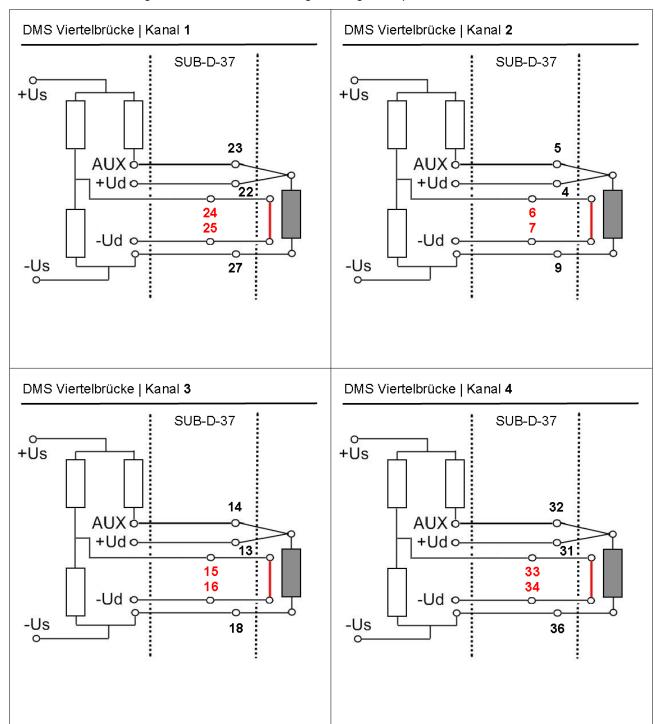
Die folgenden Grafiken zeigen den Anschluss einer Vollbrücke an Kanal 1 bis Kanal 4.



Tel.: +49 3302 89824 10

Anschluss Halbbrücke bei SUB-D37-Variante

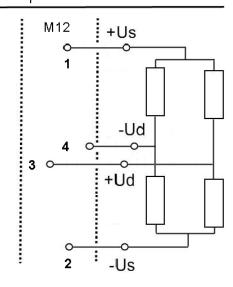
Die folgenden Grafiken zeigen den Anschluss einer Halbbrücke an Kanal 1 bis Kanal 4. Je nach Anwendungsfall, ist die Brückenergänzung anzupassen.



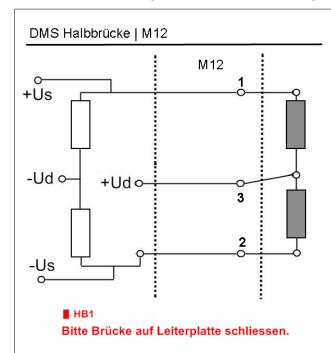
Tel.: +49 3302 89824 10

Anschluss Viertelbrücke bei SUB-D37-Variante

Die folgenden Grafiken zeigen den Anschluss einer Viertelbrücke an Kanal 1 bis Kanal 4 Je nach Anwendungsfall, ist die Brückenergänzung anzupassen.


Tel.: +49 3302 89824 10

Anschluss Vollbrücke bei M12-Variante

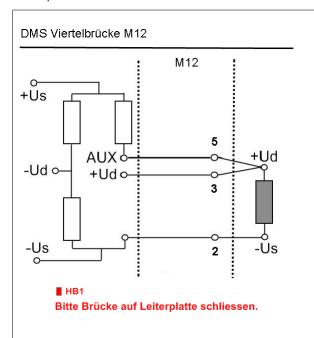

Die folgende Grafik zeigt den Anschluss einer Vollbrücke bei der M12-Variante.

DMS Vollbrücke | M12

Anschluss Halbbrücke bei M12-Variante

Die folgende Grafik zeigt den Anschluss einer Halbbrücke bei der M12-Variante. Je nach Anwendungsfall, ist die Brückenergänzung anzupassen.

Bitte setzen Sie die Lötbrücken:


- HB1 bei Verwendung von Kanal 1 mit einer Halbbrücke.
- HB2 bei Verwendung von Kanal 2 mit einer Halbbrücke.
- HB3 bei Verwendung von Kanal 3 mit einer Halbbrücke.
- HB4 bei Verwendung von Kanal 4 mit einer Halbbrücke.

Lötbrücken: Abbildung 3: M12_Standard-Variante siehe Seite 13

Anschluss Viertelbrücke und PT1000 bei M12-Variante

Die folgende Grafik zeigt den Anschluss einer Viertelbrücke und eines PT1000 Temperaturfühlers bei der M12-Variante. Je nach Anwendungsfall, ist die Brückenergänzung anzupassen.

Bitte setzen Sie die Lötbrücken:

- HB1 bei Verwendung von Kanal 1 mit einer Viertelbrücke.
- HB2 bei Verwendung von Kanal 2 mit einer Viertelbrücke.
- HB3 bei Verwendung von Kanal 3 mit einer Viertelbrücke.
- HB4 bei Verwendung von Kanal 4 mit einer Viertelbrücke.

Lötbrücken: Abbildung 3: M12_Standard-Variante siehe Seite 13

Anpassung der Brückenergänzung für GSV-4USB

Öffnen des Gerätes

1. Alle 2 Schraubenabdeckungen der Eingangsseite entfernen und die Befestigungsschrauben des Stirndeckels entfernen

Tel.: +49 3302 89824 10

Fax: +49 3302 89824 69

- 2. Die zwei Sechskantbolzen der 37-poligen Sub-D-Buchse müssen mit Hilfe eines Steckschlüssels (5mm) gelöst werden.
- 3. Die Leiterplatte wird auf Seite der 25-poligen Sub-D-Buchse herausgezogen.

Anpassung der Brückenergänzung bei M12-Variante

Die Brückenergänzung kann für jeden Kanal einzeln angepasst werden, hierzu ist das Gerät zu öffnen und nach den folgenden Abbildungen 3 – 7 die gewünschte Lötbrücke zu ergänzen. Für PT1000 Fühler wird der Ergänzungswiderstand 1kOhm gewählt.

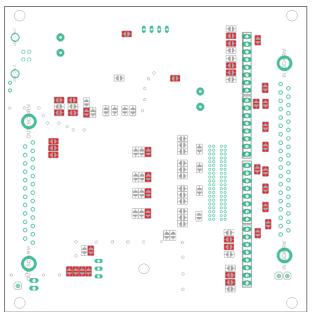


Abbildung 3: M12_Standard-Variante

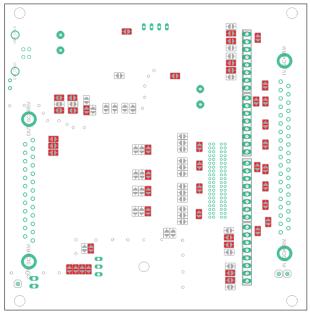


Abbildung 4: M12_Halbbrücke

Tel.: +49 3302 89824 10

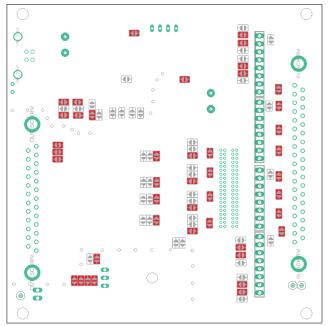


Abbildung 5: M12_Viertelbrücke_1kOhm

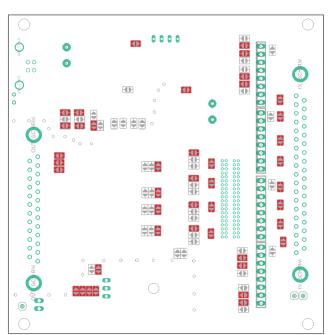


Abbildung 6: M12_Viertelbrücke_3500hm

Tel.: +49 3302 89824 10

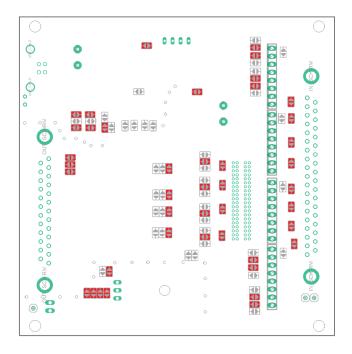


Abbildung 7: M12_Viertelbrücke_1200hm

Die folgende Tabelle erläutert die Konfigurationsmöglichkeiten gemäß den bereits dargestellten Abbildungen.

Bild, Konfiguration	Steck- verbinder	Voll- brücke	Halb- brücke	Viertel- brücke 350 Ohm	Viertel- brücke 120 Ohm	Viertel- brücke 1000 Ohm	Spannungs- eingang	potenziometri- scher Sensor
M12								
Standard-Variante	M12	ja	nein	nein	nein	nein	ja ja	ja
M12								
Halbbrücke	M12	Nein *	ja	nein	nein	nein	ja	ja
M12								
Viertelbrücke_350Ohm	M12	Nein *	ja	ja	nein	nein	nein	nein
M12								
Viertelbrücke_120Ohm	M12	Nein *	ja	nein	ja	nein	nein	nein
M12								
Viertelbrücke_1kOhm	M12	Nein *	ja	nein	nein	ja	nein	nein

^{*} Messung einer Vollbrücke mit aktiv. Halbbrückenerg. ist möglich, aber erfolgt mit einem Messfehler

Tel.: +49 3302 89824 10

Fax: +49 3302 89824 69

Anpassung der Brückenergänzung bei Sub-D37-Variante

Die Brückenergänzung kann für jeden Kanal einzeln angepasst werden, hierzu ist das Gerät zu öffnen und nach den folgenden Abbildungen 8 - 10 die gewünschte Lötbrücke zu ergänzen.

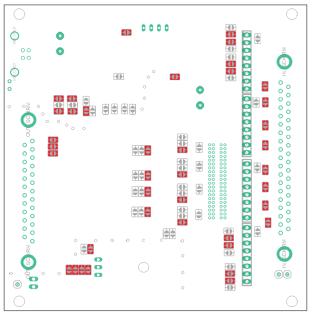


Abbildung 8: Sub-D37_Standard-Variante

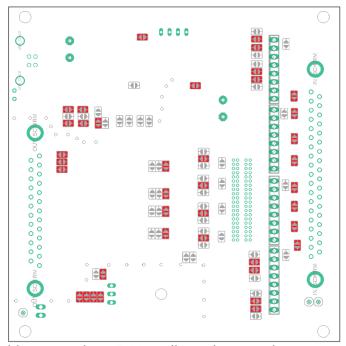


Abbildung 9: Sub-D37_Viertelbruecke_1200hm

Tel.: +49 3302 89824 10

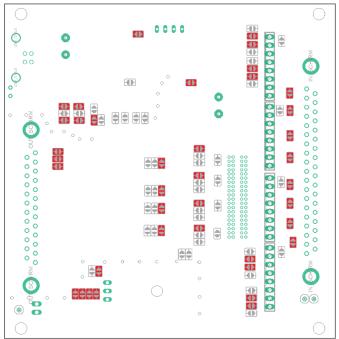
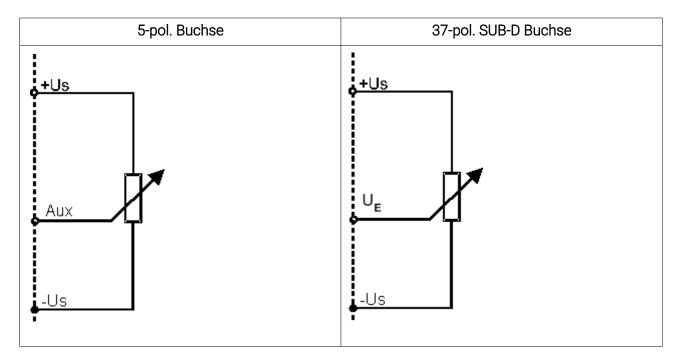


Abbildung 10: Sub-D37_Viertelbruecke_3500hm

Die folgende Tabelle erläutert die Konfigurationsmöglichkeiten gemäß den bereits dargestellten Abbildungen.

Tel.: +49 3302 89824 10


Bild, Konfiguration	Steck- verbinder	Voll- brücke	Halb- brücke	Viertel- brücke 350 Ohm	Viertel- brücke 120 Ohm	Viertel- brücke 1000 Ohm	Spannungs- eingang	potenziometri- scher Sensor
Sub-D37 Standard-Variante	Sub-D37	ja	ja	nein	nein	ja	ja	ja
Sub-D37 Viertelbruecke_350Ohm	Sub-D37	ja	ja	ja	nein	nein	ja	ja
Sub-D37 Viertelbruecke_120Ohm	Sub-D37	ja	ja	nein	ja	nein	ja	ja

Anschlussplan für Wegsensoren

Die Messverstärker GSV-4USB und muss bei der Verwendung mit potentiometrischer Wegsensoren (Linearpotentiometer bzw. Seilzugwegaufnehmer), bei der M12 Variante gesondert vom Hersteller konfiguriert werden.

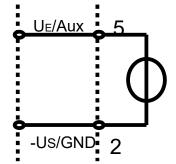
Der Schleifer des Wegsensors wird dabei an den Eingang "Aux" (M12) oder " U_E " (SubD37) des Messverstärkers angeschlossen. Die Versorgung des Wegsensors erfolgt über die Sensorspeisung +Us und -Us.

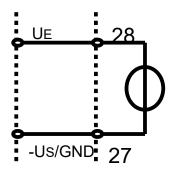
Die Speisung des potentiometrischen Wegsensors erfolgt dabei mit 2,5 V. Der Eingang Aux bzw. V_E erfasst Spannungen von 0...5 V.

Tel.: +49 3302 89824 10

Fax: +49 3302 89824 69

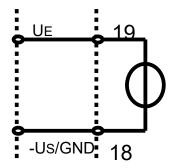
Anschlussbelegung

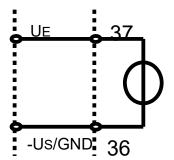

Bezeichnung	5-pol. Buchse	37-pol. SUB-D Buchs				Buchse
			CH 1	CH 2	CH3	CH 4
positive Speisung +Us	1	positive Speisung +Us	20	2	11	29
negative Speisung -Us	2	negative Speisung -Us	27	9	18	36
Eingang "Aux"	5	Eingang U _E	28	10	19	37


Anschlussplan für Spannungseingang 0...5V (0...10V)

Das zu messende Signal wird an den Eingang "Aux" (M12) oder "U_E" (SubD37) des Mesverstärkers angeschlossen. Die Signalmasse wird an -U_S/GND angeschlossen.

Der Eingang Aux bzw. U_E erfasst Spannungen von 0...5V (0...10V).


Zeichnung 2: 5-Pol. Buchse


Zeichnung 1: 37-Pol. Sub-D Buchse, CH 1

Zeichnung 4: 37-Pol. Sub-D Buchse, CH 2

Zeichnung 3: 37-Pol. Sub-D Buchse, CH 3

Zeichnung 5: 37-Pol. Sub-D Buchse, CH 4

Tel.: +49 3302 89824 10

Anschluss des Way Con - Seilzugsensors SX

4-pol. Buchse Waycon Seilzugaufnehmer SX	5-pol. Buchse		Bezeichnung			Farbcode M12 Sensor-Aktor Kabel
1 (+Speisung)	1		pos	sitive Speisu	ng +Us	braun
3 (GND)	2		neç	gative Speisi	ung -Us	blau
2 (Schleifer)	5		Ein	gang "Aux"		weiß
4-pol. Buchse Waycon Seilzugaufnehmer SX	37-pol. SUB-D Buchse					
	CH 1	CH 2		CH 3	CH 4	
1 (+Speisung)	20	2		11	29	pos. Speisung +Us
3 (GND)	27	9		18	36	neg. Speisung -Us
2 (Schleifer)	28	10		19	37	Eingang U _E

Tel.: +49 3302 89824 10

Anschlussbelegung SUB-D25-Buchse

GSV-4USB Belegung	25-pol. SUB-D (PIN-Nr.)				
IO 5V Festspannungsausgang	1				
IO GND	2				
IO 1		3	3		
IO 2		4	1		
IO 3		į	5		
IO 4		(3		
IO 5	7				
IO 6	8				
IO 7		()		
IO 8		1	0		
TX		1	1		
RX		1	2		
GND	13				
	Kanal 1 Kanal 2 Kanal 3 Kanal 4				
GND	14 17 20 23				
Spannungseingang 0-5V	15	18	21	24	
DMS-Eingang AUX	16	19	22	25	

Tel.: +49 3302 89824 10

Programmierung / Konfiguration

Zur Programmierung stehen eine Windows DLL sowie Labview VIs auf der Website zum Download. Alternativ kann der Messverstärker direkt über die serielle Schnittstelle bzw. USB mit ASCII Codes programmiert werden.

Skalierung der Messwerte

Jeder Kanal kann individuell für einen bestimmten Messbereich konfiguriert werden, z.B.

für die Messung

- mit Dehnungsmessstreifen 2 mV/V,
- mit Dehnungsmessstreifen 10 mV/V,
- mit aktiven Sensoren 0 5 V.
- mit Temperaturfühlern PT1000,
- mit Thermoelementen Typ K,
- mit aktiven Sensoren 0 10 V.

Der Messbereich wird über den Befehl "set_gain" eingestellt.

105% des Eingangssignal entsprechen einem Wertebereich von 0x0000 bis 0xFFFF.

Messbereich 2,0 mV/V

Messbereich ±2 mV/V (set_gain 0xB2 <p1> <p2>) mit p1=ch, p2=0x01</p2></p1>						
Eingangssignal in mV/V	Messbereich in %	16 Bit Ausgangswert (hexadezimal)				
2,1	105,00%	FFFFh				
2,0	100,00%	F9E7h				
0,0	0,00%	8000h				
-2,0	-100,00%	0618h				
-2,1	-105,00%	0000h				

Umrechnung von digitalem Ausgangswert zu analogem Eingangssignal:

Ausgangswert = Highbyte * 256 + Lowbyte;

Eingangssignal Ud = (Ausgangswert - 32768) / 32768 * 2,10 mV/V;

Messbereich 10,0 mV/V

Messbereich ±10 mV/V (set_gain 0xB2 <p1> <p2>) mit p1=ch, p2=0x02</p2></p1>				
Eingangssignal in mV/V	Messbereich in % 16 Bit Ausgangswert (hexadezimal)			
10,5	105,00%	FFFFh		
10,0	100,00%	F9E7h		
0,0	0,00%	8000h		
-10,0	-100,00%	0618h		
-10,5	-105,00%	0000h		

16761 Hennigsdorf

Umrechnung von digitalem Ausgangswert zu analogem Eingangssignal: Ausgangswert = Highbyte * 256 + Lowbyte; Eingangssignal Ud = (Ausgangswert - 32768) / 32768 *10,5 mV/V;

Messbereich 0,0 bis 5V

Messbereich 0 - 5 V (set_gain 0xB2 <p1> <p2>) mit p1=ch, p2=0x03</p2></p1>				
Eingangssignal in V	Messbereich in % 16 Bit Ausgangswert (hexadezima			
5,25	105,00%	FFFFh		
5,0	100,00%	F9E7h		
0,0	0,00%	8000h		

Umrechnung von digitalem Ausgangswert zu analogem Eingangssignal:

Ausgangswert = Highbyte * 256 + Lowbyte;

Eingangssignal Ue = (Ausgangswert - 32768) / 32768 * 5,25 V;

Messbereich 0,0 bis 10V

Messbereich 0 - 10 V (set_gain 0xB2 <p1> <p2>) mit p1=ch, p2=0x07</p2></p1>				
Eingangssignal in V	Messbereich in % 16 Bit Ausgangswert (hexadezimal)			
10,5	105,00%	FFFFh		
10	100,00%	F9E7h		
0,0	0,00%	8000h		

Umrechnung von digitalem Ausgangswert zu analogem Eingangssignal:

Ausgangswert = Highbyte * 256 + Lowbyte;

Eingangssignal Ue = (Ausgangswert - 32768) / 32768 * 10,5 V;

Messbereich PT1000

Messbereich PT1000 (set_gain 0xB2 <p1> <p2>) mit p1=ch, p2=0x04</p2></p1>				
Eingangssignal in °C	Messbereich in %	16 Bit Ausgangswert (hexadezimal)		
1050	105%	FFFFh		
1000	100%	F9E7h		
0,0	0,0%	8000h		
-40	-4%	6DB0h		

Umrechnung von digitalem Ausgangswert zu analogem Eingangssignal:

Ausgangswert = Highbyte * 256 + Lowbyte;

Eingangssignal Ue = (Ausgangswert - 32768) / 32768 * 1050 °C;

Tel.: +49 3302 89824 10 Fax: +49 3302 89824 69 Mail: vertrieb@me-systeme.de Web: www.me-systeme.de

Messbereich K-Thermokabel

Messbereich K-Thermokabel (set_gain 0xB2 <p1> <p2>) mit p1=ch, p2=0x06</p2></p1>				
Eingangssignal in °C	Messbereich in %	16 Bit Ausgangswert (hexadezimal)		
1050	105%	FFFFh		
1000	100%	F9E7h		
0,0	0,0%	8000h		
-40	-4%	6DB0h		

Umrechnung von digitalem Ausgangswert zu analogem Eingangssignal:

Ausgangswert = Highbyte * 256 + Lowbyte;

Eingangssignal Ud = (Ausgangswert - 32768) / 32768 * 1050 °C;

Kommandos zur Konfiguration

Zur Konfiguration wird der code des betreffenden Kommandos an den Messverstärker gesendet. Einige Kommandos erwarten Parameter, z.B. die Kanalnummer "ch" und eventuelll weitere Bytes.

Hinweis: Zum Setzen der Konfiguration sollte die Datenübertragung unterbrochen werden, indem das Kommando "stop_transmission" gesendet wird.

Nach dem Abschluss der Konfiguration kann die Datenübertragung wieder gestartet werden, indem das Kommando "start_transmission" ausgeführt wird.

Hinweise: Nach jedem Einschalten muss der "Normal-Modus" eingestellt werden, um Befehle senden zu können (0x26 01 62 65 72 6C 69 6E).

Liste der Kommandos

Die Tabelle listet die verfügbaren Kommandos (rev0x0B) und ihre hexadezimalen codes.

Kommando	Code	p1	p2	рЗ	p4	p5	р6	p7	p8	p9
set_zero	0C	ch								
save_konfiguration	09	В								
restore_konfiguration	0A	В								
set_offset	0B	ch	В	НВ	В	LB				
get_offset	0D	ch	В							
set_frequency	12	В								
get_frequency	16									
get_serial_number	1F									
set_serial_number	1E	В	В	В	В	В	В	В	В	
set_threshold	20	В	НВ	LB						
get_threshold	21	В								
stop_transmision	23									

16761 Hennigsdorf

Kommando	Code	p1	p2	рЗ	p4	p 5	рб	p7	p8	p9
start_transmision	24									
set_mode	26	В	В	В	В	В	В	В		
get_mode	27									
set_tx_status	28	В								
get_tx_status	29									
get_firmware_version	2B									
set_power_on	2C	В								
get_power_on	2D									
set_threshold_mode	2E	ch	В							
get_threshold_mode	2F									
get_value	3B									
set_cal_factor	88	ch	В	НВ	В	LB				
get_cal_factor	89	ch	В							
set_rs232	В0	В								
get_rs232	B1									
set_gain	B2	ch	В							
get_gain	ВЗ									
set_unit	B4	ch	В							
get_unit	В5	ch								
set_digital	В6	В	В							
get_digital	В7	В								
set_digital_on_off	В8	В	В							
get_digital_port	В9									
set_user_scale	ВА	ch	НВ	В	В	LB				
get_user_scale	ВВ	ch	НВ	В	В	LB				
set_user_sring	ВС	НВ	В	В	В	LB				
get_user_sring	BD									
reserviert	BE									
get_digital_port A	BF									
set_can_bitrate	C0	В								
get_can_bitrate	C1									

Kommando	Code	p1	p2	рЗ	p4	p5	рб	p7	p8	p9
reserviert	C2									
reserviert	С3									
set_can_id	C5	В	НВ	В	В	LB				
get_can_id	C6	В								
reserviert	C7	ch								
reserviert	C8	ch								
reserviert	D0	В	В	В	В	В	В	В		
reserviert	D1	ch								
reserviert	D2	В	В							
reserviert	D3									
reserviert	D4									
reserviert	D5	В	В							
reserviert	D6									

Tabelle 2: Befehlsliste für GSV-4; (ch = Kanalnummer, B=byte, HB= highbyte, LB=low byte) **Befehle** in grau sind reserviert für die Ersteinrichtung bzw. Kalibrierung. Nur die grau hinterlegten Befehle sind nach dem Neustart verfügbar.

Beschreibung der Kommandos

set_gain (B2)

Mit dem Befehl set_gain lassen sich die 4 Eingänge des Messverstärkers individuell für verschiedene Sensortypen konfigurieren.

Parameter in HEX	Beschreibung
01	DMS Eingang ±2 mV/V
02	DMS Eingang ±10 mV/V
03	Analogeingang 0 – 5 V
04	Eingang für PT1000 -40°C 1000 °C
06	Eingang für K-Thermokabel -40°C 1000 °C
07	Analogeingang 0 - 10 V

set_frequency (12)

Mit dem Befehl set_frequency wird die Datenfrequenz eingestellt. Die Messdaten werden mit der Datenfrequenz erfasst und stehen mit der Datenfrequenz bereit zur Übertragung über die Schnittstelle (CANBus, RS232, Bluetooth, GPRS, etc). Mit der Einstellung der

16761 Hennigsdorf

Datenfrequenz ergibt sich automatisch eine Einstellung für das digitale Filter, siehe Datenfrequenzen und Filtereigenschaften.

Nach der Ausführung des Befehls "start_transmission" werden die Messdaten kontinuierlich mit der eingestellten Datenfrequenz gesendet. Nach der Ausführung des Befehls "stop_transmission" werden die Messdaten nur auf Anforderung gesendet. Die Anforderung kann über das Kommando "get_value" oder bei Geräten mit CAN Bus über die CAN-Sync_ID erfolgen (Seite 37).

Hinweis: Es sollte darauf geachtet werden, dass die Anforderung der Messwerte nicht häufiger als mit der eingestellten Datenfrequenz erfolgt. Es steht sonst nicht zu jedem Zeitpunkt einer Anforderung ein aktueller Messwert zur Verfügung. Es werden gleiche Messwerte wiederholt angefordert.

Parameter in HEX	Datenfrequenz in Hz(nominell)	Datenfrequenz in Hz(effektiv)
A0	0,63	0,625
A1	1,25	1,250
A2	2,5	2,500
A3	3,75	3,750
A4	6,25	6,250
A5	7,5	7,500
A6	12,5	12,400
A7	15	14,7
A8	25	24,4
A9	125	125
AA	250	250
AB	500	500
AC	937,5	

Tel.: +49 3302 89824 10

set_can_bitrate (C0) / get_can_bitrate (C1)

Parameter in HEX	Bitrate in kbit/s
10	20
20	50
30	80
40	100
50	125
60	250
70	500 (Standard)
80	1000

save_konfiguration (0A) / restore_konfiguration (09)

Die gesamte Konfiguration (Datenfrequenz, Konfiguration der Eingänge, etc) kann als Parametersatz abgespeichert und wiederhergestellt werden. Es stehen zwei Speicher für die Konfiguration zur Verfügung.

Parameter in HEX	Beschreibung
01	Hersteller-Einstellung
02	Benutzer-Einstellung 1
03	Benutzer-Einstellung 2

set_user_scale (BA) / get_user_scale (BB)

Für jeden Kanal lässt sich ein Skalierungsfaktor im 32 Bit Format abspeichern. Dieser Skalierungsfaktor wird im EEProm des Messverstärkers gespeichert und kann mit get user scale ausgelesen werden.

Parameter in HEX	Speicher-Nr.	Bezeichnung
01	1	Kanal 1
02	2	Kanal 2
03	3	Kanal 3
04	4	Kanal 4

Zahlenformat:

Vorzeichen	Exponent	Mantisse
Bit 0	Bit 1 Bit 8	Bit 9 Bit 31

16761 Hennigsdorf

Protokoll für Messwerte

Messwerte werden von einem Prefix 0xA5 und einem Postfix aus den Zeichen 0x0D 0x0A eingerahmt (Carriage Return Linefeed).

Der gesamte Rahmen hat eine Länge von 11 Bytes.

Prefix	Kar	al 1	Kan	al 2	Kan	al 3	Kan	al 4	Pos	stfix
A5	НВ	LB	НВ	LB	НВ	LB	НВ	LB	0D	0A

Tabelle 3: Protokoll zur Übertragung der Messwerte via RS232 Schnittstelle

Protokoll für Kommandos

Nach dem Einschalten können nur die Kommandos:

get_value (0x3B)

set_mode (0x26 01 62 65 72 6C 69 6E)

get_mode (0x27)

get_tx_status (0x29)

get_firmware_version (0x2B)

benutzt werden! Um alle Kommandos benutzen zu können muss einmal "set_mode" gesendet werden.

Kommandos beginnen mit dem Code, gefolgt von Parametern.

Code	Parameter			
XX	p1	p2		pn

Beispiele:

Abfragen der Seriennummer 1F Nullsetzen von Kanal 1: 0C 01

Protokoll für Antworten auf Kommandos

Antworten werden von einem Prefix 0x3B und einem Postfix aus den Zeichen 0x0D 0x0A eingerahmt (Carriage Return Linefeed).

Der gesamte Rahmen hat eine variable Länge. Die Anzahl der noch folgenden Rahmen wird mit "n" angegeben. Die Anzahl variablen Bytes ist im vierten und fünften Byte mit dem Datenwort "len" definiert. Die Gesamtlänge der Antwort ist (10 + len) Bytes.

Eine Ausnahme bildet das Kommando "get_value". Die Antwort auf dieses Kommando erfolgt mit einem Protokoll für Messwerte.

Prefix	Code	n	le	en		Nr.			len B	ytes		Post	fix
3B	XX	В	НВ	LB	aa	bb	СС	p1	p2		pn	0D	0A

Tabelle 4: Protokoll für Antworten auf Kommandos

Beispiel: Freischalten der Kommandos

Senden: 0x26 01 62 65 72 6C 69 6E

Beispiel: Verriegeln der Kommandos

Senden: 0x26 00 62 65 72 6C 69 6E

Beispiel: Abfragen der Seriennummer

Senden: 0x23 Senden: 0x1F

Empfangen 0x 3B 1F 0100 08 30 35 30 30 38 34 34 39 30 35 30 0D 0A

Senden 0x24

Ergebnis: Die Seriennummer ist "08449050".

Beispiel: Status(Messwert Senden AUS/EIN) ändern

Für das dauerhafte Speichern des Wertes Stopp- oder Start-Messwert senden kann das Kommando set_tx_status (0x28 <p1>) benutzt werden.

Parameter in HEX	Parameter in Bit	Aktuell	Nach dem Einschalten
00	0000 0000	Messwert Senden AUS	Messwert Senden AUS
01	0000 0001	Messwert Senden AUS	Messwert Senden EIN
02	0000 0010	Messwert Senden EIN	Messwert Senden AUS
03	0000 0011	Messwert Senden EIN	Messwert Senden EIN

Senden: 0x23 Senden: 0x29

Empfangen : 0x 3B 29 01 00 01 30 33 33 01 0D 0A

Ergebnis: Aktuell-AUS, Nach dem Einschalten-EIN

Senden: 0x28 02 Senden: 0x29

Empfangen : 0x <mark>3B</mark> 29 01 00 01 30 33 33 02 0D 0A Ergebnis: Aktuell-EIN , Nach dem Einschalten-AUS

Digitale IO's

Es wird immer der gesamte Port ausgelesen (IO8 bis IO1).

GSV-4CAN Zuordnung:

Digital IO	GSV-4CAN	GSV-4BT	Port
01	Digital 1	101	101
02	-	102	102
03	Digital 2	103	103

Digital IO	GSV-4CAN	GSV-4BT	Port
04		104	104
05	Digital 3	105	105
06		106	106
07	Digital 4	107	107
08	Digital 5	108	108

Beispiel: Port auslesen

Senden: 0x23 Senden: 0xB9

Empfangen : 0x 3B B9 0100 01 30 33 33 00 0D 0A

Ergebnis: alle Ein- und Ausgänge sind "low"

Parameter in HEX	Parameter in Bit	Port
00	0000 0000	108 107 106 105 104 103 102 101

Der digitale Port kann mit set_digital (0xB6 <p1><p2>) und set_digital_on_off(0xB8 <p1> <p2>) konfiguriert werden. Mit <p1> wird der Port festgelegt.

set_digital (0xB6 <p1> <p2>)

Parameter in HEX <p2></p2>	Beschreibung
00	Eingang
01	Ausgang
02	get_Value
OA	Tara all
ОВ	Tara Kanal1
OC	Tara Kanal2
OD	Tara Kanal3
0E	Tara Kanal4
0F	Slave
10	Master
11	SW1

Tel.: +49 3302 89824 10

Parameter in HEX <p2></p2>	Beschreibung
12	SW2
13	SW3
14	SW4
15	SW5
16	SW6
17	SW7
18	SW8
21	SW1 rel.
28	SW8 rel.
31	SW1 1s
38	SW8 1s
41	SW1 rel. 1s
48	SW8 rel. 1s
51	SW1 inv.
58	SW8 inv.
61	SW1 inv. rel.
68	SW8 inv. rel.
71	SW1 inv. 1s
78	SW8 inv. 1s

Tel.: +49 3302 89824 10

Parameter in HEX <p2></p2>	Beschreibung
81	SW1 inv. rel. 1s
88	SW8 inv. rel. 1s

set_digital_on_off(0xB8 <p1> <p2>)

Parameter in HEX <p2></p2>	Parameter in Bit	Port	Beschreibung
00	0000 0000	Für IO1 bis IO8	OFF
01	0000 0001	Für IO1 bis IO8	ON

Beispiel: IO1 ändern

Senden: 0x23

Senden: 0xB6 01 0B

Senden: 0xB7

Empfangen: 0x 3B B7 0100 02 30 33 33 01 0B 0D 0A

Ergebnis: IO1 ist als Tara für kanal1 konfiguriert

Senden: 0xB6 01 00

Senden: 0xB7

Empfangen: 0x 3B B7 0100 02 30 33 33 01 00 0D 0A

Senden: 0x24

Ergebnis: IO1 ist als Eingang konfiguriert und kann mit 0xB9 ausgelesen werden

$set_{threshold} (0x20 < p1 > < p2 >)$

Parameter in HEX <p1></p1>	Beschreibung	Kanal Zuordnung	Schaltschwelle
01	SW1	1	EIN
02	SW1	1	AUS
03	SW2	1	EIN
04	SW2	1	AUS
05	SW3	2	EIN
06	SW3	2	AUS
07	SW4	2	EIN
08	SW4	2	AUS

Tel.: +49 3302 89824 10 Mail: vertrieb@me-systeme.de Fax: +49 3302 89824 69 Web: www.me-systeme.de

Parameter in HEX <p1></p1>	Beschreibung	Kanal Zuordnung	Schaltschwelle
09	SW5	3	EIN
OA	SW5	3	AUS
ОВ	SW6	3	EIN
OC	SW6	3	AUS
OD	SW7	4	EIN
0E	SW7	4	AUS
0F	SW8	4	EIN
10	SW8	4	AUS

Durch das unterschiedliche Festlegen der Ein- und Aus- Schaltschwelle kann eine Hysterese programmiert werden. Der zweite Parameter (<p2>) ist die Schaltschwelle in HEX z.B.: 0x89 FF.

Achtung um den Schwellwert direkt mit dem Messwert vergleichen zu können muss dieser mit 0x80 00 addiert werden.

Beispiel: Konfiguration des SW1 IO8 (bzw. Digital 5)

Senden: 0x 23

Senden: 0x B6 08 11

IO8 für den SW1 konfigurieren.

Senden: 0x 20 01 01 00

Die Einschaltschwelle von SW1 ist auf 0x81 00 eingestellt.

Senden: 0x 20 02 FE 00

Die Ausschaltschwelle von SW1 ist auf 0x7E 00 eingestellt.

Wenn der Messwert über 0x81 00 steigt, wird IO8 eingeschaltet. Singt der Messwert unter 0x7E 00, wird IO8 ausgeschaltet.

Analogeingang

Beispiel: Abfragen der Konfiguration der Analogeingänge

Senden: 0x23 Senden: 0xB3

Empfangen 0x 3B B3 0100 04 30 35 30 01 01 02 03 0D 0A

Senden 0x24

Ergebnis: Kanal 1 = 2 mV/V, Kanal 2 = 2 mV/V, Kanal 3 = 10 mV/V, Kanal 4 = 0 - 5 V;

Beispiel: Setzen der Konfiguration der Analogeingänge

Vorgabe: Kanal 1 bis Kanal 4 für PT1000 konfigurieren

Senden: 0x23

 Senden:
 0xB2 01 04

 Senden:
 0xB2 02 04

 Senden:
 0xB2 03 04

 Senden:
 0xB2 04 04

Senden 0x24

Beispiel: Setzen der Datenfrequenz auf 12,5Hz

Vorgabe: Die Messwerte sollen kontinuierlich mit einer Frequenz von ca. 12,5/s gesendet

werden:

Senden: 0x23 Senden: 0xA6 Senden 0x24

Tel.: +49 3302 89824 10

CAN Bus

Geräte mit CAN Bus haben die gleiche Befehlsstruktur, wie Geräte mit serieller Schnittstelle, bzw. Bluetooth oder GPRS. Prefix und Postfix entfallen, wenn die Messwerte und Antworten in einem CAN Bus Rahmen gesendet werden.

Protokoll für Messwerte

Messwerte über CAN werden immer in einem CANBus Rahmen übertragen. Die Bytes 1 bis 8 enthalten die Messdaten der 4 Kanäle mit je 16 bit. Es wird zuerst das Highbyte (HB) und dann das Lowbyte (LB) gesendet.

Kana	al 1	Kan	al 2	Kan	al 3	Kar	nal 4
НВ	LB	НВ	LB	HB	LB	НВ	LB

Tabelle 5: CAN Rahmen mit Messdaten;

Protokoll für Kommandos

Kommandos beginnen mit dem Code, gefolgt von Parametern.

Code	Parameter			
XX	p1	p2		pn

Beispiele:

Abfragen der Seriennummer ___ 1F

Nullsetzen von Kanal 1:

Protokoll für Antworten auf Kommandos

Befehle für den Messverstärker werden in den CAN-Frame (Datenbereich) übertragen. Wenn der Messverstärker eine Antwort sendet wird ein Befehlsantwort-Frame gesendet.

Kopfrahmen:

Prefix	Code	n	le	en		Nr.	
3B	XX	В	НВ	LB	aa	bb	СС

Tabelle 6: Kopfrahmen für Antworten auf Kommandos über CAN Bus

Rahmen 1 ... n

·								
	В	В	В	В	В	В	В	В
	В	В	В	В	В	В	В	В

• • •

•								
	В	В	В	В	В	В	В	В

Tabelle 7: Folgerahmen für Antworten auf Kommandos über CAN Bus

Beispiel: Abfragen der Seriennummer

Senden: 0x23 Senden: 0x1F

Empfangen 0x 3B 1F 01 00 08 30 35 30

0x 30 38 34 34 39 30 35 30

Senden 0x24

Ergebnis: Die Seriennummer ist "08449050".

Beispiel: Abfragen der Konfiguration der Analogeingänge

Senden: 0x23 Senden: 0xB3

Empfangen 0x 3B B3 01 00 04 30 35 30

0x 01 01 02 03

Senden 0x24

Ergebnis: Kanal 1 = 2 mV/V, Kanal 2 = 2 mV/V, Kanal 3 = 10 mV/V, Kanal 4 = 0 - 5 V;

Beispiel: Setzen der Konfiguration der Analogeingänge

Vorgabe: Kanal 1 bis Kanal 4 für 0 - 5V konfigurieren

Senden: 0x23

 Senden:
 0xB2 01 03

 Senden:
 0xB2 02 03

 Senden:
 0xB2 03 03

 Senden:
 0xB2 04 03

Senden 0x24

Konfiguration der CAN-ID

set id(0xC5 < p1 > < p2 >)

CAN-ID für das Empfangen von Messdaten <p1>=0x01

Die Voreinstellung der CAN-ID für das Empfangen von Messdaten ist 0x00 00 06 10 (<p2>).

CAN-ID für das Empfangen von Antworten <p1>=0x02

Die Voreinstellung der CAN-ID für das Empfangen von Antworten ist 0x00 00 06 11 (<p2>).

CAN-ID für das Senden von Befehlen <p1>=0x06

Die Voreinstellung der CAN-ID für das Senden von Befehlen ist 0x00 00 01 11 (<p2>).

CAN-ID für die Synchronisation der Messdaten <p1>=0x05

Für das Anfordern von Messwerten steht bei allen Messverstärkern die gleiche CAN-ID zur Verfügung (CAN-Sync-ID). Alle Rahmen mit dieser CAN-Sync-ID lösen das Senden eines Messwertes aus. Die Voreinstellung für die CAN-Sync-ID für das Senden ist 0x00 00 01 10 (<p2>).

Hinweis: Das ändern der CAN-ID erfolgt sofort (das ist besonders bei der ID für das Senden von Befehlen und der CAN-Baudrate zu beachten)

Beispiel: Konfiguration der CAN-Bitrate

Senden: 0x 23 Senden: 0x C0 60

Umstellen der Baudrate auf 250kBit auf dem CAN-Bus (bzw. CAN-Adapter)

Senden: 0x C1

Empfangen 0x 3B C1 01 00 01 30 35 30

0x 60

Senden 0x 24

Beispiel: Konfiguration der CAN-ID

Senden: 0x 23 Senden: 0x C6 06

Empfangen 0x 3B C6 01 00 05 30 35 30

0x 06 00 00 01 11

Die CAN-ID zum Empfang von Kommandos ist auf 0x00 00 01 11 eingestellt.

Senden: 0x C5 06 00 00 01 00

Umstellen der ID auf 0x00 00 01 00 für das Senden von Kommandos im Programm.

Senden: 0x C6 06

Empfangen 0x 3B C6 01 00 05 30 35 30

0x 06 00 00 01 00

Senden 0x 24

Die CAN-ID zum Empfang von Kommandos ist auf 0x00 00 01 00 eingestellt.

Tel.: +49 3302 89824 10

Fax: +49 3302 89824 69

Datenfrequenz und Filter

Analogfilter

Der eingebaute Analog Filter ist ein Tiefpass 1.Ordnung mit einer Eckfrequenz von 450Hz. Es wird als Antialiasing Filter für den AD-Wandler eingesetzt. Dieser Filter ist fest eingebaut und kann nicht verändert werden.

Digitalfilter

Der digitale Filter wird indirekt mit der Datenfrequenz eingestellt. Die effektive Datenfrequenz kann geringfügig von der eingestellten (nominellen) Datenfrequenz abweichen. Die rot markierten Einstellungen werden empfohlen, da bei diesen Einstellungen Störungen mit einer Netzfrequenz von 50 Hz optimal unterdrückt werden durch das eingebaute "Notch-

Filter". Bei einer Netzfrequenz von 60 Hz werden die grün markierten Einstellungen empfohlen.

Datenfrequenz in Hz (nominell)	Datenfrequenz in Hz (effektiv)	Notchfrequenz in Hz	-3db Grenzfrequenz in Hz (digital Filter)	Parameter für "set frequency"
500	500	7500	3003	0xAB
250	250	2000	878	0xAA
125	125	1000	441	0xA9
25	24,4	100	44.2	0xA8
15	14,7	60	26.5	0xA7
12,5	12,4	50	22.1	0xA6
7,5	7,5	30	13.3	0xA5
6,25	6,25	25	11.1	0xA4
3,75	3,75	15	6.63	0xA3
2,5	2,5	10	4.42	0xA2
1,25	1,25	5	2.21	0xA1
0,625	0,625	2.5	1.1	0xA0

Tabelle 8: Datenfrequenzen und Filtereigenschaften

50 Hz Notch Filter
60 Hz Notch Filter

Tel.: +49 3302 89824 10

Stand:	06.09.2024
Version	ba-gsv4-v3
Bearbeiter	
Änderungen	Changelog Seite 40

Changelog

Version	Datum	Änderungen
ba-gsv4-v2	27.04.17	Erste Fassung
ba-gsv4-v2a	02.02.18	Anschlussplan PT1000 für M12 ergänzt
ba-gsv4-v2b	15.02.21	Anschlussplan für Spannungseingang 05V (010V) hinzugefügt, Anpassung der Brückenergänzung bei m12- und Sub-D37- Varianten ergänzt
ba-gsv4-v3	06.09.2024	GSV-4BT entfernt

Tel.: +49 3302 89824 10

Änderungen vorbehalten. Alle Angaben beschreiben unsere Produkte in allgemeiner Form. Sie stellen keine Eigenschaftszusicherung im Sinne des §459 Abs. 2, BGB, dar und begründen keine Haftung.

Made in Germany

Copyright © 2024 ME-Meßsysteme GmbH Printed in Germany