

Sensoren und Messverstärker

Bedienungsanleitung

Stand:	01.09.2024
Version	ba-sensoren-v1.5
Bearbeiter	Holger Kabelitz
Änderungen	Changelog Seite 12

Mail: info@me-systeme.de

Web: www.me-systeme.de

Tel.: +49 3302 89824 10

Inhaltsverzeichnis

Einleitung	3
Anschlussplan	
Anschlussbelegung Sensor	4
Anschlussbelegung Messverstärker	4
Farbcodes für Anschlusskabel passiver Sensoren mit Vollbrücke	5
Steckverbinder	
5-poliger Rundsteckverbinder, "M12", Binder, Serie 713	6
15-poliger SubD15HD	7
15-poliger SubD15	8
Sensoren mit Analogausgang	8
Richtung des Ausgangssignals	8
Inbetriebnahme des Messsystems	
Skalierung des Ausgangssignals	9
Beispiel 1, Messverstärker mit Spannungsausgang	9
Beispiel 2, Messverstärker mit Stromausgang	
Überprüfung der Funktion	
Schirmung / Erdung / Rauschamplitude	10
Datenfrequenz	11
Schirmung	11
Erdung	
Isolation	11
Massekonzept	
Spannungsversorgung und Netzteile	
Leitungsverlegung, Einstreuungen	
Messbereich und mathematische Operationen	
Changelog	12

Tel.: +49 3302 89824 10

Einleitung

In diesem Dokument werden der Anschluss und die Inbetriebnahme von Kraftsensoren, Drehmomentsensoren, Dehnungssensoren, und anderen Sensoren, die mit einer Dehnungsmessstreifen Vollbrücke ausgestattet sind. Diese (passiven) Sensoren werden mit einem Messverstärker verbunden, der das Ausgangssignal der Wheatstone Brücke umwandelt, z.B. in ein analoges Ausgangssignal ±10V, oder 4...20mA, oder an einer digitalen Schnittstelle, z.B. USB in digitaler Form zur Verfügung stellt.

In diesem Dokument werden die Anschlussbelegungen typischer Sensoren beschrieben, sowie die Belegungen häufig benutzte Steckverbinder und die Farbcodes häufig benutzter Anschlusskabel.

Abweichende Anschlussbelegungen sind möglich, im Einzelfall sind das Datenblatt oder das Prüfprotokoll des Sensors und des Messverstärkers heranzuziehen.

Anschlussplan

Sensoren mit Dehnungsmessstreifen-Vollbrücke verfügen über mindesten vier Anschlüsse:

- a) die positive und negative Brückenspeisung +Us und -Us,
- b) das posive und das negative Aisgangssignal der Vollbrücke +Ud und -Ud,
- c) einige Sensoren verfügen zusätzlich über sogenannte Fühlerleitungen +Uf und -Uf, um den Spannungsabfall der Brückenspeisung über die Länge des Anschlusskabels zu messen und zu kompensieren,
- d) einige Sensoren verfügen über ein digitales Datenblatt "TEDS" (Transducer Electronic Datasheet), welcher von Messverstärkern für die Justage des Ausgangssignals genutzt werden kann.
- e) weitere mögliche Leitungen, wie z.B. ein zusätzlicher Anschluss zum Selbsttest bzw. zur Shunt-Kalibrierung werden in diesem Dokument nicht behandelt. Zur Inberiebnahme des Sensors sind die Anschlüsse des Sensors mit den gleichnamigen Anschlüssen des Messverstärkers zu verbinden. Die Abbildung 1 zeigt den Anschlussplan. Die Tabelle 1 zeigt die üblichen Benennungen für die Anschlüsse.

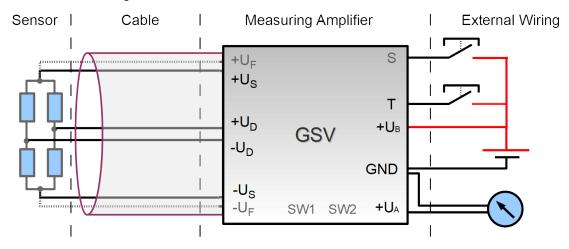


Abbildung1: Anschluss des Sensors an den Messverstärker

Tel.: +49 3302 89824 10

Hinweise

- Bitte ein geschirmtes Anschlusskabel für den Sensor verwenden.
- Der Schirm des Sensorkabels wird auf -Us, oder auf GND, oder auf eine dafür vorgeshene Klemme aufgelegt.
- Die Leitungen von +U_B und GND sowie Leitungen von +U_A und GND sollten paarig verlegt werden.
- Die GND-Klemme ist bei einigen Messverstärkern doppelt zu belegen.
- Eine rauscharme und stabilisierte Spannungsversorgung ist erforderlich. Bitte für Sensorik und Aktorik getrennte Netzteile verwenden.
- Bei Sensoren mit geschirmten Steckverbindern wird der Schirm nur am Sensor aufgelegt: Der Sensor wird geerdet oder mit GND verbunden.

Anschlussbelegung Sensor

	Bezeichnung Sensor	Bezeichnung GSV	Hinweis
-Us	negative Brückenspeisung (-Excitation, -Input)	negative Brückenspeisung	-Us ist bei vielen Messverstärkern mit GND verbunden
+Us	positive Brückenspeisung (+Excitation, +Input)	positive Brückenspeisung	Die Positive Brückenspeisung beträgt bei den meisten Messverstärkern 5V DC oder 2,5V DC.
+U _D	positiver Brückenausgang (+Output)	positiver Differenzeingang	Das positive Brückenausgangs-Signal des Sensors, wird am positivem Differenzeingang des GSV angeschlossen.
-U _D	negativer Brückenausgang (-Output)	negativer Differenzeingang	Das negative Brückenausgangs-Signal des Sensors, wird am negativem Differenzeingang des GSV angeschlossen.
-UF	negative Fühlerleitung (-Sense)	negative Fühlerleitung	Die Fühlerleitung -UF des Sensors kann bei fehlendem Eingang am Messverstärker parallel mit -Us angeschlossen werden.
+U _F	positive Fühlerleitung (+Sense)	positive Fühlerleitung	Die Fühlerleitung +UF des Sensors kann bei fehlendem Eingang am Messverstärker parallel mit +Us angeschlossen werden.

Tabelle 1: Anschlussplan für die Verbindung des Sensors mit dem Messverstärker

Bei Messverstärkern mit Anschlüssen für Fühlerleitungen (6-Leiter Anschluss) kann eine Brücke von - U_S zu - U_F und eine Brücke von + U_S zu + U_F gelegt werden, wenn der Sensor in 4-Leiter-Technik ausgeführt ist.

Anschlussbelegung Messverstärker

Messverstärker mit Analogausgang verfügen in der Regel über einen Anschluss für die Versorgung mit elektrischer Energie (positive Betriebsspannung +UB und Masse GND), sowie über einen Anschluss für das analoge Ausgangssignal +UA. Je nach Modell des

Messverstärkers steht eine eigene Anschlussklemme für die Masse des Ausgangssignals und für die Masse der Betriebsspannung zur Verfügung, oder es wird ein gemeinsamer Anschluss für beide Massen genutzt.

Weitere mögliche Eingänge sind z.B. "Tara" (T) für automatischen abgleich des Nullsignal-Offsets sowie "Scale" (S) für automatische Justage des aktuell anliegenden Eingangssignal auf 100% des Ausgangssignals. Die Tabelle 2 zeigt den Anschlussplan des Messverstärkers.

	Bezeichnung	Beispiel	Art
+U _B	positive Betriebsspannung	12V DC oder 24V DC	Eingang
+UA	Analogausgang	±10 V oder 420mA oder 010V	Ausgang
Т	Tara (Nullsetzeingang)	mit Betriebsspannung für 2s verbinden. Auslösung auf fallende Flanke	Eingang
S	Scale (Autoscale-Eingang)	mit Betriebsspannung für 3s verbinden. Auslösung auf fallende Flanke	Eingang
GND	Masse		Bezugspotential für Betriebsspannung und Ausgangssignal

Tabelle 2: Anschlussplan für die Verbindung des Messverstärkers mit Betriebsspannung und der externen Signalverarbeitung.

Farbcodes für Anschlusskabel passiver Sensoren mit Vollbrücke

Tel.: +49 3302 89824 10

Fax: +49 3302 89824 69

Die Tabelle 3 zeigt häufig genutzte Farbcodes für die Anschlusskabel von Sensoren mit Dehnungsmessstreifen.

			Farbcode Nr.				
	Beschreibung	1	2	3	4	5	
+Us	positive Brückenspeisung	braun	braun	rot	rot	grün	
-Us	negative Brückenspeisung	weiß	weiß	schwarz	schwarz	schwarz	
+U _D	positiver Brückenausgang	grün	blau	grün	grün	weiß	
-U _D	negativer Brückenausgang	gelb	schwarz	weiß	gelb	rot	

+U _F	positive Fühlerleitung	rosa	blau	gelb
-U _F	negative Fühlerleitung	grau	weiß	blau

Tabelle 3: Farbcodes für Sensor-Anschlusskabel

Steckverbinder

Passive Sensoren mit Dehnungsmessstreifen Vollbrücken TEDS Masse wird mit -Us verbunden.

5-poliger Rundsteckverbinder, "M12", Binder, Serie 713

Tel.: +49 3302 89824 10

Abbildung 2: Polbild Stecker M12

		Farbcode-Nr			
Pin- Nr	Beschreibung	1	2	3	
1	+U _s positive Brückenspeisung	braun	braun	rot	
2	-U _s negative Brückenspeisung	weiß	weiß	schwarz	
3	+U₀ positiver Brückenausgang	grün	blau	grün	
4	-U₀ negativer Brückenausgang	gelb	schwarz	weiß	
5	TEDS				

15-poliger SubD15HD

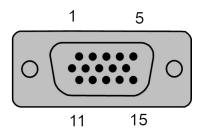


Abbildung 3: Polbild Stecker SubD15HD

		Farbcode-Nr.		
Pin-Nr	Beschreibung	1	2	3
1	TEDS			
2	-U _s negative Brückenspeisung	weiß	weiß	schwarz
3	+U _s positive Brückenspeisung	braun	braun	rot
5	+U _D positiver Brückenausgang	grün	blau	grün
7	-U _F negative Fühlerleitung	grau		
8	+U _F positive Fühlerleitung	rosa		
10	-U _D negativer Brückenausgang	gelb	schwarz	weiß
Schirm	Gehäuse	transparent	transparent	transparent

Tel.: +49 3302 89824 10

15-poliger SubD15

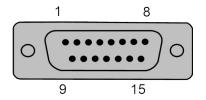


Abbildung 4: Polbild Stecker SubD15

		Farbcode-Nr		
Pin-Nr	Beschreibung	1	2	3
5	-U _s negative Brückenspeisung	weiß	weiß	schwarz
6	+U _s positive Brückenspeisung	braun	braun	rot
8	+U _D positiver Brückenausgang	grün	blau	grün
12	-U _F negative Fühlerleitung	grau		
13	+U _F positive Fühlerleitung	rosa		
15	-U _D negativer Brückenausgang	gelb	schwarz	weiß
Schirm	Gehäuse	transparent	transparent	transparent

Sensoren mit Analogausgang

Sensoren mit Analogausgang 0...10V oder 4...20mA

		Farbcode-Nr			
Abk.	Beschreibung	1	2	3	4
+U _b	Versorgungsspannung 24V DC	braun	braun / 1	braun	braun / 1
GND	Masse Versorgungsspannung	weiß	weiß / 2	grün	blau / 3
+U _A	Ausgangssignal 010V / 420mA	grün	blau/ 3	weiß	weiß / 2
Tara	Steuereingang für Nullabgleich	gelb	schwarz / 4	gelb	schwarz / 4
Scale	Steuereingang für Verstärkungs- abgleich	grau	grau / 5	grau	grau / 5
SW	Schwellwert-ausgang	rosa			

Richtung des Ausgangssignals

Die Richtung des Ausgangssignals (z.B. positives Ausgangssignal bei Druckbelastung) lässt sich bei passiven Sensoren mit Dehnungsmessstreifen Vollbrücken umkehren (z.B. negatives Ausgangssignal bei Druckbelastung), indem die Leitungen $+U_d$ und $-U_d$ an den Eingängen des Messverstärkers getauscht werden.

Tel.: +49 3302 89824 10

Bei Sensoren mit Analogausgang lässt sich die Richtung nicht umkehren. Es werden Varianten mit Nullabgleich auf 5V bzw. 12mA empfohlen, um Druck- und Zugmessung zu ermöglichen.

Inbetriebnahme des Messsystems

- Einbau des Sensors und des Messverstärkers an den vorgesehenen Positionen.
- Verbinden des Sensors mit dem Messverstärker entsprechend dem Anschlussplan in Tabelle 1.
- Verbinden des Messverstärkers mit Betriebsspannung und der weiteren Signalverarbeitung entsprechend dem Anschlussplan in Tabelle 2.
- Nullsetzen des Augangssignals durch Auslösen der automatischen Nullsetzfunktion "Tara".

Skalierung des Ausgangssignals

Der Zusammenhang zwischen Eingangsgröße (z.B. Kraft, Drehmoment oder Dehnung) und Ausgangssignal wird durch die folgenden Eigenschaften von Sensor und Messverstärker bestimmt:

- Messbereich des Sensors (z.B. 100N)
- Ausgangssignal (Kennwert) des Sensors (z.B. 0,9950 mV/V pro 100N)
- Messbereich (Eingangsempfindlichkeit) des Messverstärkers (z.B. 2,0000 mV/V)
- Ausgangssignal des Messverstärkers bei 100% Aussteuerung des Messbereiches (z.B. 10,00V)

Beispiel 1, Messverstärker mit Spannungsausgang

$$\frac{100 \, N}{0.9950 \, mV/V} \cdot \frac{2,0000 \, mV/V}{10 \, V} = 20,10 \, \frac{N}{V}$$

Beispiel 2, Messverstärker mit Stromausgang

Ausgangssignal des Messverstärkers bei 0% Aussteuerung des Messbereiches (z.B. 4 mA)

$$\frac{100 \, N}{0,9950 \, mV/V} \cdot \frac{2,0000 \, mV/V}{16 \, mA} = 12,56 \, \frac{N}{mA}$$

Bei Messverstärkern mit Analogausgang lässt sich der Messbereich durch Setzen einer Steckbrücke anpassen auf z.B. 1,000 mV/V oder 0,5000 mV/V oder 0,2000 mV/V.

Bei Messverstärkern mit digitalem Ausgangssignal können der Skalierungfaktor und die Einheit im nichtflüchtigen Speicher des Messverstärkers hinterlegt werden. Zur Berechnung des Skalierungsfaktors steht in der Software GSVmulti eine Eingabemaske für die vier charakteristischen Größen von Sensor und Messverstärker zur Verfügung. Nur der Skalierungsfaktor und die Einheit werden im nichtflüchtigen Speicher des Messverstärkers abgelegt, nicht die Eingabedaten.

Überprüfung der Funktion

Folgende Eigenschaften können im Fall einer Fehlfunktion zur Prüfung der Funktion

Tel.: +49 3302 89824 10

herangezogen werden.

Eigenschaft	Wert
Betriebsspannung UB gegen GND	z.B. 12V DC oder 24V DC
Brückenspeisespannung +Us gegen -Us	0 mV (±1 mV)
Sensor-Widerstand +UD gegen -UD	z.B. 350 Ohm oder 700 Ohm oder 1000 Ohm (±5%)
Sensor-Widerstand +Us gegen -Us	z.B. 400 Ohm oder 800 Ohm oder 1200 Ohm (± 20%)
Sensor Widerstand gegen Sensorgehäuse	>20 MOhm

Hinweis: Die Widerstände +Us gegen -Us sind in der Regel ca. 10% höher als die Widerstände +UD gegen -UD.

Schirmung / Erdung / Rauschamplitude

Im Idealfall wird der Messbereich von 0...+2 mV/V in wenigstens 10.000 ablesbaren Anzeigeschritten aufgelöst. Das bedeutet, die Rauschamplitude ist kleiner als 2mV/V / 10000 = 200 nV/V.

Bei einem Sensor mit Nennkraft 100N und 2 mV/V Ausgangssignal kann man also 0,01N gerade noch ablesen, erst die dritte Nachkommastelle wird schwanken.

Auflösung heißt aber nicht Genauigkeit: Durch temperaturbedingte Drift oder durch Nullpunktrückkehrfehler oder Kriechfehler kann die Anzeige nach einigen Sekunden oder nach einem Belastungszyklus um mehr als 0,01 N abweichen.

Mit dem Produkt GSV-8 sind im Idealfall ca. 100.000 Anzeigeschritte möglich. Die Rauschamplitude beträgt ca. 20 nV/V.

Die erreichbare Auflösung ist abhängig von den folgenden Einflussgrößen

Tel.: +49 3302 89824 10

Fax: +49 3302 89824 69

- Konfiguration des Messverstärkers bezüglich Datenfrequenz / analoge Filter
- Schirmung
- Erdung
- Isolation
- Massekonzept
- Spannungsversorgung und Netzteile
- Leitungsverlegung, Einstreuungen
- Messbereich und mathematische Operationen

Tipp: Die Software GSVmulti bietet im Fenster "Y-t Recorder) die Möglichkeit zur Anzeige der Rauschamplitude (max-min) und der Auflösung (Resol.Parts.pp) anstelle des Istwertes (ActualValue).

Datenfrequenz

Die Abbildung 5zeigt die Auflösung verschiedener Messverstärker unter idealen Bedingungen bei verschiedenen Datenfrequenzen.

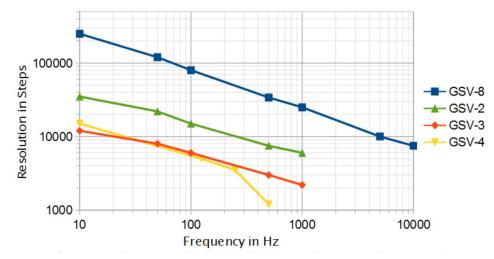


Abbildung 5: Auflösung in Abhängigkeit der eingestellten Datenfrequenz

Schirmung

Für Sensoren mit Dehnungsmessstreifen werden geschirmte, und teils paarig verdrillte Anschlussleitungen verwendet. Der Schirm wir auf der Seite des Messverstärkers z.B. am Gehäuse des Steckverbinders (GSV-8, GSV-4) oder auf GND oder auf negativer Sensorspeisung aufgelegt.

Erdung

Bei Messverstärkern mit USB Schnittstelle ist die Erdung der USB Schnittstelle entscheidend für die Qualität des Messsignals. Verwenden Sie nur Notebook-Netzteile mit Erdung. Mögliche Maßnahmen: Verwenden Sie den mitgelieferten Erdungs-Anschluss bei GSV-8 und GSV-1USB. Testen Sie die Qualität der Signale mit Netzteil und im Akku-Betrieb.

Isolation

Die DMS Widerstände im Sensor sind isoliert vom Sensorgehäuse. Durch einen Defekt (Einfluss von Feuchte, Vibration) kann der isolationswiderstand unzulässig niedrig sein (<20MOhm) und dadurch Einstreuungen und Rauschen verursachen.

Massekonzept

Insbesondere bei Messverstärkern mit Analogausgang ist eine sternförmige Verbindung zu einem gemeinsamen Masseanschluss entscheidend, um sogenannte Brummschleifen zu

Tel.: +49 3302 89824 10

verhindern.

Spannungsversorgung und Netzteile

Die Qualität der Spannungsversorgung und der Netzteile kann die Qualität der Messsignale beeinflussen. Verwenden Sie nach Möglichkeit die mitgelieferten Netzteile für GSV-8 oder GSV-1USB oder GSV-2TSD-DI. Verwenden Sie bitte für Aktorik und Sensorik getrennte Netzteile, um eine gute Qualität der GND Leitungen zu gewährleisten.

Leitungsverlegung, Einstreuungen

Bus- und Leistungskabel sollten nach Möglichkeit nicht parallel in einem gemeinsamen Kabelkanal zu Sensor-Anschlussleitungen verlegt werden.

Messbereich und mathematische Operationen

Mehrkomponenten Sensoren weisen verschieden Messbereiche für die einzelnen Achsen auf. Dementsprechend ist die Auflösung bzw. Rauschamplitude auf den einzelnen Kanälen unterschiedlich. Zusätzlich haben mathematische Operationen teilweise einen Einfluss auf die erreichbare Rauschamplitude, z.B. bei Mehrkomponenten-Sensoren, weil die die Anzeige für die Komponente Fz additiv aus sechs einzelnen Kanälen berechnet wird.

Changelog

Version	Datum	Änderungen
kb-wiringplan.odt	27.03.12	erste Fassung
ba-sensoren-v1.0.odt	02.01.19	Layout überarbeitet; Grafik Verdrahtungsplan; Inbetriebnahme;
ba-sensoren-v1.1.odt	19.03.19	Abschnitt über Steckverbinder
ba-sensoren-v1.2.odt	20.03.19	Abschnitt über Rauschamplitude und Auflösung
ba-sensoren-v1.3,odt	09.11.20	Abschnitt über Rekalibrierung
ba-sensoren-v1.4.odt	25.06.21	SubD15 Steckverbinder und aktive Sensoren zugefügt
Ba-sensoren-v1.5.odt	01.09.24	Einleitung und Anschlussplan ergänzt

Tel.: +49 3302 89824 10