
Measuring with strain gauges

Formulary for the elementary load cases
Stand: 17.03.2024, Kab.

1. bending (rectangular cross-section)

Calculation of the bending moment from the measured strain or from the measured bridge 
detuning

The maximum stress σb on the edge fibre results from the bending moment Mb and the 

section modulus Wb against bending:

σb=
M b

W b

(eq. 1.1)

The following applies to rectangular cross-sections with beam width b and beam height h:

W b=
bh2

6
(eq. 1.2)

With Hooke's law :
σ=E⋅ϵ (eq. 1.3)

 and equations 1) and 2) are calculated for the moment from the measured strain on the 
surface of a bending beam with a rectangular cross-section:

M b=ϵ⋅E⋅
bh2

6
(eq. 1.4)

 With the linearised bridge equation
ΔUd
Us

=
1
4
⋅(

Δ R1
R1

−
Δ R2
R2

+
Δ R3
R3

−
ΔR4
R4

) (eq. 1.5)

and the relationship between strain and resistance change for the strain gauge
Δ R
R

=k⋅ϵ (eq. 1.6)

 applies to a full bridge withε1 =  ε3 = - ε2 =  -ε4 = ε
ΔU d

U s

=
1
4
(4 k ϵ)=k⋅ϵ (eq. 1.7)
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with eq. 1.7 in eq. 4 you get:

M b=
ΔU d

U s

⋅
1
k
⋅E⋅
bh2

6
eq. 1.8

2. bending (cylindrical cross-section)

For cylindrical cross-sections with diameter d, the following applies to the moment of 
resistance against bending:

W b=
πd 3

32
eq. 2.1

Analogue to Eq. 1.4, the relationship between moment and strain is obtained:

M b=ϵ⋅E⋅
πd 3

32
eq. 2.2

For the full bridge with 4 active grids, the result is analogous to Eq. 1.8:

M b=
ΔU d

U s

⋅
1
k
⋅E⋅

π d 3

32
eq. 2.3

For the quarter bridge, due to
ΔU d

U s

=
1
4
k⋅ϵ eq. 2.4

M b=
ΔU d

U s

⋅
4
k
⋅E⋅

π d 3

32
eq. 2.5

3. torsion

Calculation of the torsional moment from the measured strain or from the measured bridge
detuning

The maximum shear stress τt on the edge fibre results from the torsional moment Mt and 

the moment of resistance Wt against torsion

τt=
M t

W t

(eq. 9)

For the cylindrical cross-section, the section modulus Wt is equal to the polar section 
modulus Wp.
The following applies to the solid cylinder:
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W t=
πd 3

16
=W p (Gl 10a)

The following applies to the hollow cylinder:

W t=
π(d a

4
−d i

4
)

16d a
=W p (eq. 10b)

With Hooke's law

τ=G⋅γ (eq. 11)

and eq. 9 and eq. 10B the moment MT is calculated from the shear ϒ 

M t=γ⋅G⋅W p=γ⋅G⋅
π(d a

4
−d i

4
)

16d a
(eq. 12)

Only the strain ε can be measured with the strain gauge, not the shear ϒ.
The relationship between shear and strain applies under a measuring direction of α=45° to 
the longitudinal axis:

ϵ45=γ/2 (eq. 13) (veq. Anhang, 2)

The shear modulus G can be derived from the modulus of elasticity E and the transverse 
contraction coefficient ν:

G=
E

2⋅(1+ν)
(eq. 14)

with eq. 13 and eq. 14 in eq. 12results in the required relationship between strain and 
torsional moment

M t=2⋅ϵ45⋅
E

2⋅(1+ν)

π(d a
4
−d i

4
)

16 d a
=ϵ45⋅

E
(1+ν)

π(d a
4
−d i

4
)

16d a
=

ΔU d

U s

⋅
1
k
⋅
E

(1+ν)

π(d a
4
−d i

4
)

16 d a
(eq. 15)

By comparing eq. 15 with eq. 11 and eq. 12 and from the (Mohr's stress circle for the stress 
case of torsion )can also be found:

τ=
E
1+ν

⋅ϵ45=σ1=−σ2 (Gl 16)

4. Axialkraft

Calculation of the axial force from the measured elongation or from the measured bridge 
detuning
The following applies to the mechanical stress σz in an axially loaded bar:

σ z=
F z
A

(eq. 4.1)

The cross-sectional area A results for the cylindrical full cross-section:
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A=π
d2

4
(eq. 4.2)

 with Hooke's law :
σ=E⋅ϵ (eq. 4.3)

and equations 4.1) and 4.2) are calculated for the axial force Fz from the measured strain on

the surface of a bar with a cylindrical cross-section:

F z=ϵ⋅E⋅
π d 2

4
(eq. 4.4)

With the linearised bridge equation
ΔUd
Us

=
1
4
⋅(

Δ R1
R1

−
Δ R2
R2

+
Δ R3
R3

−
ΔR4
R4

) (eq. 4.5)

and the relationship between strain and resistance change for the strain gauge
Δ R
R

=k⋅ϵ (eq. 4.6)

applies to a full bridge with 2 longitudinal gratings ε1 =  ε3 = ε and two Quergittern = ε2 =  
ε4 = -ν ε
ΔU d

U s

=
1
4
((2+2 ν) k ϵ)=

1
2
(1+ν)k⋅ϵ (eq. 4.7)

with  eq. 4.7 in eq. 4.4 is obtained for the full bridge:

F z=
ΔU d

U s

⋅
2
1+ν

⋅
1
k
⋅E⋅

πd 2

4
eq. 4.8

 and for the quarter bridge:

F z=
ΔU d

U s

⋅
4
k
⋅E⋅

π d 2

4
eq. 4.9

5. bending (double bending beam)

In the case of a double bending beam, a shift in the point of force application has a first 
approximation influence on the resulting bending moment. In the centre of the double 
bending beam, the moment characteristic curve has a zero crossing.

In contrast to the single bending beam, positive and negative bending moments (and 
therefore positive and negative strains) are present on both the top and bottom of the 
double bending beam.

Wheatstone's full bridge with 4 active measuring grids can be realised, for example, by 
equipping the double beam on one surface with two double linear strain gauges, or with 
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four single strain gauges, two on the top and two on the bottom.

Accordingly, the bending line has an inflection point in the centre of the double beam. The 
inclination of the free end of the double bending beam is zero. The load causes a parallel 
displacement.

The equation of the bending line for the double bending beam is as follows:

1
R (x)

=
w ' '(x )

(1+w ' (x)2)
3
2

=
M (x)
2E I y (x)

=

Fb(
L2
2

−x)

2E I y(x)
 mit I y(x )=

bh3(x )
12

(eq. 5.1)

The expansion at the surfaces of each (individual) beam is:

ϵ (x )=
h(x )
R (x)

⋅
1
2

(eq. 5.2) 

Quelle [2]: Szabó, István: Einführung in die Technische Mechanik. Springer Verlag, Berlin, 1984.

If the radius of curvature R(x) in equation 5.1 is replaced by the definition of the strain in 
equation 5.2, the result is

ϵ (x )=
3M (x )

bE h2(x)
(eq. 5.3)

The equation for determining the beam height at the positions of the strain gauge x=0 and 

x=L1 for a given strain and given force for a double beam with two single beams without 

stiffeners (r=0) is
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with M(x=0) = Fb * L1 / 2:

h1=√ 3 Fbb Eϵ
⋅
L1
2

(eq. 5.4)

The deflection of the double beam is obtained by integrating the equation for the bending 
line(eq. 5.1) with

(1+w ' (x)2)
3
2≈1 (eq. 5.6)

Let the origin of x be at the beginning of the double bar.

2E I y (x)w ' ' (x)=Fb(
L2
2

−x ) (eq. 5.7)

2E I y (x)w ' (x)=Fb(
L2
2
⋅x−

x2

2
)+C1 (eq. 5.8)

With the boundary condition that the inclination w'(x=L2) equals 0 at the right end of the 

double bar, the integration constant

 C1 = 0

−Fb(
L2
2

2
−
L2
2

2
)=C1 ; C1 = 0; (eq. 5.9)

After the second interation applies:

2E I y (x)w (x)=Fb(
L2
2
⋅
x2

2
−
x3

6
)+C2 (eq. 5.10)

With the boundary condition that the deflection w(x=0) equals 0 at the beginning of the 
double beam, the integration constantC2 = 0 is obtained as the equation of the bending line:

w (x)=
Fb

2E I y (x)
(
L2
2
⋅
x2

2
−
x3

6
) (eq. 5.11)

The deflection at the free endL2 is:

w (L2)=
Fb L2

3

24 E I y (L2)
=
Fb L2

3

2b Eh3
(eq. 5.12)

Further calculation equations for parallel guides can be found in Appendix 4).
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Appendix

1) Axial and polar moment of inertia for the circular cross-section

With the polar moment of inerita, the neutral fibre passes through a pole (a point in the 
centre of the circular cross-section). 

With the axial area moment of inerita,the neutral fibre is an axis (an axis in the centre of the 
circular cross-section). 

The following applies to a circular cross-section: 

The polar area moment of inertia aggainst torsion is twice as large as the axial area 
moment of inertia against bending
I p=∫

A

r2dA=∫
A

(x2+ y2)dA=∫
A

x2dA+∫
A

y2dA= I x+I y

W p=
I p

(d /2)
=
1
2
W b=

1
2

I b
(h /2)

2) Relationship between shear and strain

Source [4]: Agne, Klaus: Technical mechanics in precision engineering. Tasks Examples Solutions. Vieweg + 
Teubner verlag, Braunschweig, 1988. 

The circular arcs B'E and C'F can be assumed to be straight lines for small shears γ. The 
following applies for strains ε1 and ε2:
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Figure 2: Torsion measurement with strain 
gauges

Figure 1: Relationship between 
shear γ and strain Δl/l in the 
measurement direction α 



ϵ1=
BE
BD

;ϵ2=
−CF
AC

;

With γ ≈ tan γ = BB'/AB =  CC'/CD  ε1 and ε2 :

ϵ1=
BB ' cosα
AB /sin α

=
BB '
AB

sinαcosα=γ
1
2
sin 2α

ϵ2=
CC ' cosα
CD /sinα

=
CC '
CD

sinαcosα=−γ
1
2
sin 2α

For α = 45°
ϵ1=γ/2 ; ϵ2=−γ/2 ;

3) Resistance moments against torsion for selected cross-sections

Source [1]: Läpple, Volker: Solution manual for the introduction to strength of 
materials.Vieweg und Teubner Verlag, Wiesbaden, 2007.

By inserting the section moduli Wt into Eq. 15, the torsional moment Mt can be calculated 
from the strain or bridge detuning for non-cylindrical cross-sections.
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Figure 3: Moment of resistance Wt for rectangular cross-sections and ellipse, from [1]
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4) Calculation equations for parallel guides

Source [3]: Krause, Werner: Design elements of precision mechanics. Carl Hanser Verlag, 
Munich, 2018.

ME-Meßsysteme GmbH
Eduard-Maurer-Str. 9 Tel.: +49 3302 89824 10 Mail: info@me-systeme.de

10 16761 Hennigsdorf Web: www.me-systeme.de

Figure 4: Moment of resistance Wt for triangular cross-sections and thin-walled, open 
hollow cross-sections, from [1]
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Figure 5: Table 8.3.3 ‘Calculation equations for simple parallel guides’, from [3]


